
Eclipse Winery

Contributors to the Eclipse Foundation

Jul 06, 2022

CONTENTS:

1 User Guide 3

2 Developer Guide 31

3 Notes on TOSCA 33

4 Architectural Decision Log 35

5 Getting support for Eclipse Winery 37

6 License 39

i

ii

Eclipse Winery

Eclipse Winery is a web-based environment to graphically model TOSCA topologies and plans managing these topolo-
gies. The environment includes a type and template management component to offer creation and modification of all
elements defined in the TOSCA specification. All information is stored in a repository, which allows importing and
exporting using the TOSCA packaging format.

Are you tired of maintaining your TOSCA files manually by just using a text editor?

Use Eclipse Winery as an usability layer on top to maintain your TOSCA files (XML or YAML) in a graphical and
intuitive user interface. Eclipse Winery provides a graphical web-editor with which you can create and maintain all
TOSCA entities. Thereby, Eclipse Winery stores all TOSCA entities in a defined folder structure that fosters the
reusability of TOSCA types. Eclipse Winery validates and stores all TOSCA entities in the syntax defined in the
standard.

Further, the graph-based representation of TOSCA topologies in Eclipse Winery provides a quick overview of the
entire system and offers a communication basis for the cooperation with other parties. It therefore offers a quicker
introduction to modeling with TOSCA and provides newcomers with necessary guidelines.

This is the main documentation of Eclipse Winery.

Organizational information is provided at the eclipse.org page.

Demo Video
Getting Started User Guide
Licence EPL-2.0 OR Apache-2.0
Maintainer(s) Eclipse Winery Contributors

CONTENTS: 1

http://eclipse.org/winery
https://youtu.be/xEjarBWcdK0?t=81
https://projects.eclipse.org/projects/soa.winery/who

Eclipse Winery

2 CONTENTS:

CHAPTER

ONE

USER GUIDE

Eclipse Winery is a web-based environment to graphically model OASIS TOSCA topologies and plans managing these
topologies. It is an Eclipse project and thus support is available through its project page. Winery is also part of the
OpenTOSCA ecosystem where more information is available at opentosca.org. For more information on TOSCA see
our TOSCA information page.

1.1 Getting Started

1.1.1 Launching with Docker

Note: It is recommended that your host or virtual machine has at least 2GB of memory.

Open a command prompt and execute the following command:

docker run -it -p 8080:8080 \
-e PUBLIC_HOSTNAME=localhost \
-e WINERY_FEATURE_RADON=true \
-e WINERY_REPOSITORY_PROVIDER=yaml \
-e WINERY_REPOSITORY_URL=https://github.com/radon-h2020/radon-particles \
opentosca/radon-gmt

Launch a browser: http://localhost:8080.

Note: To start Eclipse Winery based on an TOSCA XML repository layout, use the following command:

docker run -it -p 8080:8080 \
-e PUBLIC_HOSTNAME=localhost \
-e WINERY_REPOSITORY_URL=https://github.com/OpenTOSCA/tosca-definitions-public \
opentosca/winery

Note: Make sure you regularly pull the latest images:

docker pull opentosca/radon-gmt:latest
or
docker pull opentosca/winery:latest

3

https://projects.eclipse.org/projects/soa.winery
http://www.opentosca.org
http://localhost:8080

Eclipse Winery

Use a custom TOSCA model repository

Problem: You want to use an existing TOSCA model repository that you have cloned, e.g., to add new or adapt
existing TOSCA types and blueprints in this Git repository.

Please follow the next instructions to mount an existing TOSCA model repository into the Eclipse Winery container.
This is useful if you want to save your modeling changes onto your Docker host machine.

Clone or create git repository on your local filesystem, e.g., by cloning https://github.com/radon-h2020/
radon-particles.

Open a command prompt and execute the following command:

Warning: Replace <path_on_your_host> with the respective dirctory path on your host system.

docker run -it -p 8080:8080 \
-e PUBLIC_HOSTNAME=localhost \
-e WINERY_FEATURE_RADON=true \
-e WINERY_REPOSITORY_PROVIDER=yaml \
-v <path_on_your_host>:/var/repository \
-u `id -u` \
opentosca/radon-gmt

Launch a browser: http://localhost:8080.

Any change (create service template, modify or create node types) will be reflected on your host machine. You are now
able to commit your changes and push them to your own Git remote (e.g., using git push from a command-prompt).

Note: To start Eclipse Winery based on an TOSCA XML repository layout, use the following command:

docker run -it -p 8080:8080 \
-e PUBLIC_HOSTNAME=localhost \
-v <path_on_your_host>:/var/repository \
opentosca/winery

Model and version your applications and company-specific types only

Problem: You want to model applications based on actively maintained TOSCA type repositories but you want to
version/save only your own application blueprints and company-specific types inside your (private) Git repository
(GitHub, GitLab).

You are able to start Eclipse Winery in a so-called “multi-repository” setup where you can add several TOSCA type
repositories that you can use for your application models. However, with this setup, Eclipse Winery creates a specific
“workspace” that only contains your company-specific types and application blueprints (separated by namespace).
You can then mount the created “workspace” to save your modeling results to your own Git remote.

Open a command prompt and execute the following command:

Warning: Replace <path_on_your_host> with a respective dirctory path on your host system.

4 Chapter 1. User Guide

https://github.com/radon-h2020/radon-particles
https://github.com/radon-h2020/radon-particles
http://localhost:8080

Eclipse Winery

docker run -it -p 8080:8080 \
-e PUBLIC_HOSTNAME=localhost \
-e WINERY_FEATURE_RADON=true \
-e WINERY_REPOSITORY_PROVIDER=yaml \
-e WINERY_DEPENDENT_REPOSITORIES="[{ \"name\" : \"RADON Particles\", \"url\" : \

→˓"https://github.com/radon-h2020/radon-particles.git\", \"branch\" : \"master\" }]"
→˓\
-v <path_on_your_host>:/var/repository \
-u `id -u` \
opentosca/radon-gmt

Your created TOSCA service templates or company-specific TOSCA node types will be stored on your host machine.
You are now able to commit your changes and push them to your own Git remote (e.g., using git push from a
command-prompt).

1.1.2 Launching with Docker Compose

Note: It is recommended that your host or virtual machine has at least 2GB of memory.

Install Docker and Docker Compose.

Clone the repository:

git clone https://github.com/eclipse/winery
cd winery/deploy/compose

[Optional] Adapt the Docker Compose configuration to your needs, e.g., to mount a local TOSCA model repository.

Start Winery:

docker-compose up

Launch a browser: http://localhost:8080.

1.2 Modeling with Winery

Launch a browser and navigate to http://localhost:8080.

1.2.1 Modeling an Application

Eclipse Winery starts in the Service Template view. In this view, users can create new TOSCA service template or
maintain existing ones.

To create a new TOSCA service template click on Add new. In the “Add new” pop up you can specify your template’s
name, enable/disable versioning, and specify the namespace to be used. For example, you may choose a namespace
like com.example.blueprints to logically group your TOSCA service templates.

Warning: Do not use spaces in your service template name. Use _ or - to separate names.

1.2. Modeling with Winery 5

https://docs.docker.com/compose
http://localhost:8080
http://localhost:8080

Eclipse Winery

In the Service Template Detail view you can add some readme text and assign a respective license. Further, to compose
your application open the Topology Modeler by Topology Template > Open Editor.

Model Node Templates

In the editor, you can drag and drop existing TOSCA node types to the canvas to define a new TOSCA node template.
You can select a modeled node to modify its display name and additional data using the right pane.

You can change properties or add artifacts by enabling the Properties or Artifacts view in the header bar.

Define Relations Between Node Templates

Relationships in TOSCA (according to TOSCA YAML 1.3) are modeled using matching Requirements and Capabili-
ties (please refer to the standard to get more detailed information or checkout the Notes on TOSCA page).

In the Topology Modeler, you can enable the Requirements & Capabilities view in the header bar. Then, open the
Requirements of the source node and the Capabilities of the target node. Finally, drag a respective relationship type
(e.g., HostedOn) from the requirement (e.g., host) to a matching capability (e.g., host).

1.2.2 Export CSAR

The TOSCA exchange format is a Cloud Service Archive (CSAR). A CSAR is essentially a ZIP file following a certain
directory layout and contains all necessary files and template to execute the deployment of the modeled application.

Open the Service Template view. Search for your service template and open it. In the Service Template Detail view
you can click on Export either to Download the CSAR or to save it to the filesystem (<repository>/csars on
your host system).

1.3 Node Type Development

Start Eclipse Winery as described in “Use a custom TOSCA model repository” of the Getting Started page. This way,
newly created Node Types will be reflected in the filesystem which is mounted into Winery’s Docker container.

Before you start, create a new branch:

git checkout -b <name>

You can push this branch to a Git origin to share your work with others or you could propose a pull-request to the
original Git repository.

6 Chapter 1. User Guide

Eclipse Winery

1.4 Modeling based on TOSCA XML (deprecated)

This guide shows an overview of how to model TOSCA node types and service templates using Winery. Before
starting this guide, please take a look at Miscellaneous Notes.

The following shows how to model new node types and how to use them at the modeling of a new service template. In
this example, the runtime Python3 shall be installed on an Ubuntu 14.04 virtual machine running on an Openstack
infrastructure. For this, we require three node types. In this example, we model two node types, Python3 and Ubuntu
14.04, and assume that the OpenStack node type was previously modeled.

1.4.1 Creating a new Node Type

By selecting the tab Node Types, a list of available node types is shown. To create a new node type, press the button
Add new.

This will open a dialog in which the Name, Component version, and Namespace of the new node type can be config-
ured.

1.4. Modeling based on TOSCA XML (deprecated) 7

Eclipse Winery

Once the node type is created, it can be further configured through different tabs of its detailed view.

8 Chapter 1. User Guide

Eclipse Winery

For example, to add properties to the node type, select the tab Properties Definition.

In this example, the Python3 node type does not require any properties.

1.4. Modeling based on TOSCA XML (deprecated) 9

Eclipse Winery

1.4.2 Modeling the Node Type Interface

To specify what the Python3 node type should do, we define an interface and the operations provided by this interface.
An interface containing lifecycle operations (install, configure, start, stop, uninstall) can be automatically generated,
however, any arbitrary interface can be created.

To generate a lifecycle interface, press Generate Lifecycle Interface and Save. For the node type Python3, we only use
the operation install.

1.4.3 Modeling an Artifact Template for a Node Type Operation

Once the operations of a node type are defined, artifacts (e.g., shell scripts, .war files) implementing these operations
need to be modeled. In this example, we have a shell script to install Python3 on Ubuntu, which we model as an
artifact template.

To create an artifact template, select the tab Other Elements, under the category Artifacts select the option Artifact
Templates, and press the button Add new.

10 Chapter 1. User Guide

Eclipse Winery

This will open a dialog in which the Name, Versioning, Type, and Namespace of the artifact template can be configured.
Assuming that some artifact types were previously modeled, choose the type ScriptArtifact.

1.4. Modeling based on TOSCA XML (deprecated) 11

Eclipse Winery

Once the artifact template is created, it can be further configured through different tabs of its detailed view.

Finally, to load th install script to the artifact template, select the tab Files, and drop the file into the drop zone.

12 Chapter 1. User Guide

Eclipse Winery

1.4.4 Modeling the Node Type Implementation

To create a node type implementation, select the tab Other Elements, under the the category Implementations select
the option Node Type Implementations, and press the button Add new. This will open a dialog in which the Name, the
corresponding node type, and Namespace of the node type implementation can be configured. By type, select the node
type we created before.

1.4. Modeling based on TOSCA XML (deprecated) 13

Eclipse Winery

To link the created artifact template to this node type implementation, select the tab Implementation Artifacts and press
the button Add. In the shown dialog, choose the option Link Artifact Template, then select the artifact template that
was previously created.

14 Chapter 1. User Guide

Eclipse Winery

1.4.5 Modeling the Ubuntu Node Type

The modeling of the Ubuntu node type is similar to the modeling of the Python3 node type.

1.4. Modeling based on TOSCA XML (deprecated) 15

Eclipse Winery

16 Chapter 1. User Guide

Eclipse Winery

However, the artifact templates for the Ubuntu 14.04 are .war files instead of shell scripts. In this case, after defining
the interfaces and operations of the Ubuntu node type, we can automatically generate a stub java maven project to build
a .war file for a defined interface. For this, press Generate Implementation Artifact. The node type implementation
will be automatically generated as well.

1.4. Modeling based on TOSCA XML (deprecated) 17

Eclipse Winery

18 Chapter 1. User Guide

Eclipse Winery

1.4. Modeling based on TOSCA XML (deprecated) 19

Eclipse Winery

After editing the generated stub project, we can built it and load the resulting .war file to the artifact template in the
tab Files.

20 Chapter 1. User Guide

Eclipse Winery

1.4. Modeling based on TOSCA XML (deprecated) 21

Eclipse Winery

1.4.6 Creating the Service Template

To finally model the service template, at the tab Services Templates, press Add new.

Go to tab Topology Template and press the button Open Editor.

22 Chapter 1. User Guide

Eclipse Winery

In the editor, the Palette on the left shows the available node types, which can be drag and dropped in the modeling
area.

To model the relationship that the Python3 runtime is hosted on the Ubuntu virtual machine, click at the Python3 node
template. This will show a list of possible relationship types (previously modeled). Click in the option HostedOn and
pull the shown arrow to the Ubuntu node template area, in order to connect these node templates.

1.4. Modeling based on TOSCA XML (deprecated) 23

Eclipse Winery

24 Chapter 1. User Guide

Eclipse Winery

1.4.7 Exporting a Service Template Package

To export the Service Template as a CSAR package, press Other, then Export CSAR.

1.4.8 Miscellaneous Notes

Properties of a Template can be either full XML or key/value based. If key/value based, a wrapper XML element is
required. Since QNames have to be unique, Winery proposes as namespace the namespace of the template appended
by propertiesdefinition/winery. The name of the wrapper element is properties.

Note: Implementation hint: This is implemented in PropertiesDefinitionComponent.
onCustomKeyValuePairSelected (TS) and org.eclipse.winery.model.tosca.TEntityType.
getWinerysPropertiesDefinition (Java).

1.4. Modeling based on TOSCA XML (deprecated) 25

Eclipse Winery

1.4.9 Uniqueness of QNames

Intentionally, a QName should be unique within the repository. We did not follow this assumption, but only require
that QNames are unique within a type. That means, the repository allows {http://www.example.org}id for
both a service template and a node type. We introduced DefinitionsChildId uniquely identifying a TOSCA element.
Future versions might redesign the backend to use a QName as the unique key.

1.5 Component and Feature Overview

1.5.1 Components

The TOSCA modeling tool Winery mainly consists of four parts: (1) the templates, types, plans, and CSARs manage-
ment, (2) the TOSCA topology model editor, (3) the BPMN4TOSCA management plan editor, and (4) the repository
to store templates, types, plans, etc.

For the templates, types, plans, and CSARs management a user interface Templates, Types, Plans & CSARs Manage-
ment UI that enables managing all TOSCA types, templates, and related artifacts is available. This includes node types,
relationship types, policy types, artifact types, artifact templates, and artifacts such as virtual machine images. The
Templates, Types, Plans & CSARs Management backend component provides functionality to access, store, or delete
TOSCA elements in the Templates, Types, Plans & CSARs Repository which is a file system storing all available
TOSCA elements.

The TOSCA Topology Model Editor enables the creation of service templates as directed graphs. Service templates
consists of instances of node types (node templates) and instances of relationship types (relationship templates). They
can be annotated with requirements and capabilities, properties, deployment artifacts, and policies. Modeled service
templates can be exported based on the TOSCA XML standard using the TOSCA XML Model Importer & Exporter or

26 Chapter 1. User Guide

Eclipse Winery

as YAML Model using the TOSCA YAML Model Importer & Exporter. Because the internal data model of the Winery
is based on the XML standard the TOSCA YAML Model to TOSCA XML Model Transformer is required to enable
the import and export as XMl as well as YAML model. The standard packaging format for service templates and all
related TOSCA elements is a Cloud Service Archive (CSAR). The CSAR Packager backend component is responsible
to package all TOSCA elements in the archive. The archive can be used by a TOSCA runtime for the deployment of
the described cloud application.

The BPMN4TOSCA Management Plan Editor offers web-based creation of BPMN models with the TOSCA extension
BPMN4TOSCA. That means, the editor supports the BPMN elements and structures required by TOSCA plans and
not the full set of BPMN. The BPMN4TOSCA Management Plan Importer enables to load existing management plans
to the Winery. Because not only BPMN but also BPEL is a common modeling language for the automated workflow
execution, a BPMN4TOSCA to BPEL Transformer component is available to support different modeling standards. In
case a running instance of the OpenTOSCA Container is available provisioning plans can be automatically generated
by the BPEL Provisioning Plan Generator.

In addition to the described basis functionality of the TOSCA modeling tool Winery several advanced functionalities
are provided:

• Consistency Check: This functionality enables to check whether a service template is valid according to the
TOSCA XML specification. This includes the definition of used node types and properties, the QNames, and if
License and README files are available. This supports the user to model valid service templates.

• XaaS Packager: It enables the deployment of, e.g., a web application by reusing an existing service template and
replacing the deployment artifact in the specified node type with the new deployment artifact. The underlying
platform or infrastructure services do not have to modeled for each application, predefined templates can be
used. More information can be found here.

• Topology Completion: The TOSCA Topology Completion of Winery enables the user to model incomplete
TOSCA Topology Templates and complete them automatically step-by-step by injecting new node templates to
fulfill open requirements. More information can be found here.

• Splitting & Matching: The Split & Match function facilitates the redistribution of application components to
target locations. For this, the application components can be annotated with target labels to indicate the desired
target locations. In the Matching Templates Repository platform or infrastructure services can be defined as node
templates or complete topology fragments for each target location. Based on the desired split, the node templates
of the original service template are split according to the labels and the matching node templates or topology
fragments for hosting the application’s components in the target location are matched with the corresponding
part of the split topology. More information can be found here.

• Versioning & Difference Calculation: To support version control of all TOSCA elements, including node types,
artifact templates, service templates, and so on, the versioning component enables to add different versions of
a TOSCA element and to release them after the development phase. Released elements can not be modified to
ensure consistency of specific versions in the ecosystem. In addition, the differences between two versions can
be calculated and visualized in the TOSCA Topology Model Editor.

• Accountability: In collaborative development of application deployment models in business-critical scenarios
(such as data-analysis), accountability is of high importance. Thus, at CSAR export time, Winery enables
to store the TOSCA meta file in a blockchain to identify the author of each exported version and whether a
contained artifact is changed and by whom. Winery also stores these artifacts versions in a decentralized storage
which facilitates comparing them and visualizing the provenance of a specific resource.

• Compliance Checking (Compliance Rule Editor, Compliance Checker & Compliance Rules Repository): The
Topology Compliance Checking of Winery enables to describe restrictions, constraints, and requirements for
Topology Templates in form of reusable topology-based Compliance Rules. These rules can be modeled using
the Compliance Rule Editor and stored in the Compliance Rules Repository. Each rule consists of an Identifier
and a Required Structure. If the defined identifier is contained in a topology, the required structure must be
contained as well. Furthermore, the Compliance Checker of Winery can be used to ensure that a given Topology
Template is compliant to the current set of Compliance Rules. More information can be found here.

1.5. Component and Feature Overview 27

https://github.com/OpenTOSCA/container

Eclipse Winery

• Key-based Policy Template Generator: This functionality allows to generate security policy templates based on
keys stored in the key manager. Since a key-based security policy represents a key in a decoupled manner, the
policy template only contains the details about the key, but not the key itself. Modelers can use this functionality
to simplify generation of policy templates which represent respective keys.

• Key & Access Control List (ACL) Management: This functionality allows storing and generating symmetric
keys and keypairs with self-signed certificates as well as specifying the access rules for keys for specific part-
ner names. It allows modelers to enforce modeled security requirements at CSAR import and export times.
However, this is an administrative functionality that potentially can be used for other purposes.

• Implementation Artifact Generator: To specify what a node type should do, the user can define an interface
and the operations provided by this interface. Once the operations of a node type are defined, artifacts (e.g.,
shell scripts, .war files) implementing these operations need to be modeled. With the Implementation Artifact
Generator a stub java maven project to build a .war file for a defined interface is generated automatically.

• Grouping: This functionality allows the grouping of node templates in the TOSCA topology model editor. It
enables the possibility to model groups within a topology, e.g., to describe that a policy only applies to a certain
group of node templates, but not to all node templates of a topology template.

1.5.2 Features

• Splitting - Splitting functionality

• Target Allocation - Select best suited cloud provider for topologies

• Topology Completion - Topology completion overview

• XaaS Packager - Enables reusing modeled topologies as templates for single applications

• Compliance Checking - Enables compliance checking of topology templates based on reusable rules

• Implementation Artifact Generation - Shows how to generate and update an implementation artifact of type war

• Version Management - Shows how to update the version of a node template in the topology modeler

• Threat Modeling For NFV - Enables threat modeling capabilities and NFV-based mitigation recommendation

• Pattern-based Deployment and Configuration Models - Describes how PbDCMs can be crated and refined to
executable deployment models

• Grouping - Describes the usage of the grouping functionality.

1.6 Winery CLI

The Winery CLI can be used to perform a consistency check for a given repository.

• Linux: docker run -it -v $(pwd):/root/winery-repository opentosca/winery-cli
winery -v

• Windows: docker run -it -v ${PWD}:/root/winery-repository opentosca/
winery-cli winery -v

Note: You may replace $(pwd) or ${PWD} with a directory location on your Docker host system.

Currently supported CLI arguments:

28 Chapter 1. User Guide

Eclipse Winery

-h,--help prints this help
-p,--path <arg> use given path as repository path
-v,--verbose be verbose: output the checked elements

1.7 Frequently Asked Questions (FAQ)

1.7.1 Q: What is TOSCA?

A: The Topology and Orchestration Specification for Cloud Applications (TOSCA) is an OASIS standard to describe
the deployment and management of applications in a portable manner. Based on standard-compliant TOSCA runtimes,
such as the OpenTOSCA ecosystem, the deployment and management can be automated. For more details see our
notes on TOSCA.

1.7.2 Q: What is a CSAR?

A: Cloud Service Archive (CSAR) is a packaging format defined by the TOSCA specification, which enables to bundle
modeled TOSCA components in a self-contained manner. Besides the TOSCA elements, the executable artifacts are
packed as well. In winery, you can model a service template and export it as a CSAR. This CSAR can be loaded into
the OpenTOSCA container in order to deploy your application.

1.7.3 Q: How can I start the OpenTOSCA ecosystem?

A: You can start the ecosystem by simply using Docker Compose or by using installation scripts. Please refer to the
OpenTOSCA getting started guide for more details.

1.7.4 Q: Is there an open repository for TOSCA types?

A: Yes! We provide a GitHub repository compatible to Winery, which contains several service templates, node types,
etc. To use this repository with a Winery docker container, please refer to the corresponding configuration instructions
in the user guide.

1.7.5 Q: Where can I find a quick start guide to model Node Types?

A: You can find a Winery quick start guide about modeling node types in our user guide.

1.7.6 Q: How can I export my modeled application as a CSAR?

A: Select the tab Services Templates. From the listed service templates, select the one you want to export. In the
detailed view, press Export and then choose the option CSAR (XML).

1.7. Frequently Asked Questions (FAQ) 29

https://www.opentosca.org/sites/use_opentosca.html
https://github.com/OpenTOSCA/tosca-definitions-public

Eclipse Winery

1.7.7 Q: My modeled Node Type got the suffix name wip what does this mean?

A: This means your node type has a work in progress (wip) version. That is, this node type can and might be changed.
Once you are done, you can do a release of your node type. In this way, Winery will not allow changes in the (released)
node type anymore.

1.7.8 Q: How can I release a Node Type?

A: Select the tab Node Types. From the listed node types, select the one you want to release. In the detailed view,
press Versions and then choose the option Release management version.

1.7.9 Q: On Mac OS X, I can neither delete a Node Template nor a Relationship
Template.

A: Select the node template (or the relationship template) and press <kbd>fn</kbd> + <kbd>backspace</kbd>.

1.7.10 Q: Where can I get more help?

A: If you need support, contact us at opentosca@iaas.uni-stuttgart.de.

1.7.11 Q: How can I contribute to Winery?

A: Please see the contributing guide.

30 Chapter 1. User Guide

https://github.com/eclipse/winery/blob/main/CONTRIBUTING.md

CHAPTER

TWO

DEVELOPER GUIDE

This document provides an index to all development guidelines and background information of Eclipse Winery.

• Recommended Reading

• Modules - Winery’s module structure

• Branches - How to branch

• Source Code Headers - Documentation about required source code headers

• REST API - How Winery’s REST API works

• Encoding - Information about how encoding is used in Winery

• ID System - Winery’s ID System

• Repository Layout - Documents the layout of the repository (stored as plain text files)

• Property Handling

• Configuration and Features

• TOSCA 1.0 Notes

• IDE Setup

– IntelliJ IDEA (recommended): config/IntelliJ IDEA

– Eclipse: config/Eclipse

• Winery GitHub Workflow

• Setup Winery Toolchain

• Winery and Docker

2.1 Getting Started

• Clone the repository: git clone https://github.com/eclipse/winery && cd winery.

• Build Eclipse Winery: mvn clean install -DskipTests (skipping the tests for a faster build).

• Setup your IDE:

– IntelliJ IDEA (recommended): config/IntelliJ IDEA

– Eclipse: config/Eclipse

• Go to Eclipse Winery Toolchain for further details

• Get familiar with Winery’s GitHub workflow

31

Eclipse Winery

32 Chapter 2. Developer Guide

CHAPTER

THREE

NOTES ON TOSCA

The Topology and Orchestration Specification for Cloud Applications (TOSCA) is a standard defined by the OASIS
organization. It defines a language to model (cloud) applications to automate their provisioning and management.
Thereby, TOSCA is vendor and technology independent and aims at defining applications in a portable and interoper-
able manner.

In general, there are two different flavours built in to TOSCA: (i) declarative modeling and (ii) imperative modeling.
While the traditional, declarative way to model an application is in the form of a Topology Template, i.e., a graph that
describes the application’s components and their relations, it also supports imperative workflows that exactly state the
tasks and their order in which they have to be processed. However, since we can automatically generate the imperative
workflows based on the declarative model, Winery focuses mainly on the creation of the component’s types, i.e.,
Node Types, and whole applications, i.e., Service Templates that add additional meta-information and wrap a Topology
Template.

For more details about the standard, go to the specifications as linked below. For more documentation about how to
model an application using Winery and the OpenTOSCA ecosystem, see <../user/xml/index.rst>.

3.1 Recommended Readings

1. Portable Cloud Services Using TOSCA. In: IEEE Internet Computing (2012) - Short overview.

2. TOSCA: Portable Automated Deployment and Management of Cloud Applications. In: Advanced Web Services
(2014) - Longer overview.

3. TOSCA Simple Profile in YAML Version 1.3 - The simple profile in YAML.

See http://www.opentosca.org/sites/publications.html for a list of publications in the OpenTOSCA ecosystem.

3.2 TOSCA 1.3 YAML

• Official Specification

• Class Diagram

• PlantUML

33

http://doi.org/10.1109/MIC.2012.43
http://doi.org/10.1007/978-1-4614-7535-4_22
http://doi.org/10.1007/978-1-4614-7535-4_22
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
http://www.opentosca.org/sites/publications.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html

Eclipse Winery

3.3 TOSCA 1.0 XML (Deprecated)

• Official Specification

• Class Diagram

• PlantUML

3.4 Example TOSCA YAML Files

• Project RADON

3.5 Available TOSCA Implementations

• https://wiki.oasis-open.org/tosca/TOSCA-implementations

34 Chapter 3. Notes on TOSCA

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
https://github.com/radon-h2020/radon-particles
https://wiki.oasis-open.org/tosca/TOSCA-implementations

CHAPTER

FOUR

ARCHITECTURAL DECISION LOG

This lists the architectural decisions for Eclipse Winery.

• ADR-0000 - Use Markdown Architectural Decision Records

• ADR-0001 - Use filesystem as backend

• ADR-0002 - File system folder structure using type-namespace-id structure

• ADR-0003 - Double Encoded URLs

• ADR-0004 - OAuth with GitHub

• ADR-0005 - XML editor does not enforce validation

• ADR-0006 - Wrap properties in TOSCA properties element

• ADR-0007 - Custom URI for lifecycle interface

• ADR-0008 - No support for local git source clones

• ADR-0009 - Manual serialization of SnakeYAML

• ADR-0010 - TOSCA YAML deserialization using SnakeYAML

• ADR-0011 - Use Builder Pattern for Model Classes

• ADR-0012 - Provide Support for Custom Key-Value Properties

• ADR-0013 - Routes in the Repository Angular App

• ADR-0014 - Use Eclipse Orion as Editor

• ADR-0015 - Offer copying files from the source to the files folder

• ADR-0016 - Reflection test for TOSCA YAML builder

• ADR-0017 - Modify JAX-B generated classes

• ADR-0018 - Version Identifier in a Debian-like Form

• ADR-0019 - Versions of TOSCA elements in the name

• ADR-0020 - TOSCA Definitions contain excaly one element

• ADR-0021 - Use logback for logging

• ADR-0022 - tosca.model is more relaxed than the XSD

• ADR-0023 - Use Maven as build tool

• ADR-0024 - Use TravisCI for Continuous Integration

• ADR-0025 - Use same logback-test.xml for each sub project

35

Eclipse Winery

• ADR-0026 - Store LICENSE and README.md in respective entity’s root folder in a CSAR

• ADR-0027 - Use dasherization for filenames

• ADR-0028 - Use hardcoded namespaces for threat modeling

• ADR-0029 - IPSec Algorithm Implementation

• ADR-0030 - Support of multiple repositories

• ADR-0031 - Reuse the pattern refinement implementation for pattern detection

The template.md contains the MADR template. More information on MADR is available at https://adr.github.io/madr/.

36 Chapter 4. Architectural Decision Log

https://adr.github.io/madr/

CHAPTER

FIVE

GETTING SUPPORT FOR ECLIPSE WINERY

• In case you have concrete issues, please open an issue at https://github.com/eclipse/winery/issues.

• There is a mailing list available at https://dev.eclipse.org/mailman/listinfo/winery-dev.

• General information about Eclipse Winery is available at https://eclipse.org/winery.

37

https://github.com/eclipse/winery/issues
https://dev.eclipse.org/mailman/listinfo/winery-dev
https://eclipse.org/winery

Eclipse Winery

38 Chapter 5. Getting support for Eclipse Winery

CHAPTER

SIX

LICENSE

Copyright (c) 2013-2020 Contributors to the Eclipse Foundation.

See the NOTICE file(s) distributed with this work for additional information regarding copyright ownership. This
program and the accompanying materials are made available under the terms of the Eclipse Public License 2.0 which
is available at http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0 which is available at https:
//www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

39

http://www.eclipse.org/legal/epl-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

	User Guide
	Developer Guide
	Notes on TOSCA
	Architectural Decision Log
	Getting support for Eclipse Winery
	License

