

Eclipse Winery

Eclipse Winery is a web-based environment to graphically model TOSCA topologies and plans managing these topologies.
The environment includes a type and template management component to offer creation and modification of all elements defined in the TOSCA specification.
All information is stored in a repository, which allows importing and exporting using the TOSCA packaging format.

Are you tired of maintaining your TOSCA files manually by just using a text editor?

Use Eclipse Winery as an usability layer on top to maintain your TOSCA files (XML or YAML) in a graphical and intuitive user interface.
Eclipse Winery provides a graphical web-editor with which you can create and maintain all TOSCA entities.
Thereby, Eclipse Winery stores all TOSCA entities in a defined folder structure that fosters the reusability of TOSCA types.
Eclipse Winery validates and stores all TOSCA entities in the syntax defined in the standard.

Further, the graph-based representation of TOSCA topologies in Eclipse Winery provides a quick overview of the entire system and offers a communication basis for the cooperation with other parties.
It therefore offers a quicker introduction to modeling with TOSCA and provides newcomers with necessary guidelines.

This is the main documentation of Eclipse Winery.

Organizational information is provided at the eclipse.org page [http://eclipse.org/winery].

	Demo

	Video [https://youtu.be/xEjarBWcdK0?t=81]

	Getting Started

	User Guide

	Licence

	EPL-2.0 OR Apache-2.0

	Maintainer(s)

	Eclipse Winery Contributors [https://projects.eclipse.org/projects/soa.winery/who]

Contents:

	User Guide

	Developer Guide

	Notes on TOSCA

	Architectural Decision Log

	How to Contribute [https://github.com/eclipse/winery/blob/main/CONTRIBUTING.md]

	Found an issue? [https://github.com/eclipse/winery/blob/main/CONTRIBUTING.md#contributing-issues]

Getting support for Eclipse Winery

	In case you have concrete issues, please open an issue at https://github.com/eclipse/winery/issues.

	There is a mailing list available at https://dev.eclipse.org/mailman/listinfo/winery-dev.

	General information about Eclipse Winery is available at https://eclipse.org/winery.

License

Copyright (c) 2013-2020 Contributors to the Eclipse Foundation.

See the NOTICE file(s) distributed with this work for additional information regarding copyright ownership.
This program and the accompanying materials are made available under the terms of the Eclipse Public License 2.0 which is available at http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0 which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

User Guide

Eclipse Winery is a web-based environment to graphically model OASIS TOSCA topologies and plans managing these topologies.
It is an Eclipse project and thus support is available through its project page [https://projects.eclipse.org/projects/soa.winery].
Winery is also part of the OpenTOSCA ecosystem where more information is available at opentosca.org [http://www.opentosca.org].
For more information on TOSCA see our TOSCA information page.

Contents:

	Getting Started

	Modeling with Winery

	Node Type Development

	Modeling based on TOSCA XML (deprecated)

	Component and Feature Overview

	Winery CLI

	Frequently Asked Questions (FAQ)

Getting Started

Launching with Docker

Note

It is recommended that your host or virtual machine has at least 2GB of memory.

Open a command prompt and execute the following command:

docker run -it -p 8080:8080 \
 -e PUBLIC_HOSTNAME=localhost \
 -e WINERY_FEATURE_RADON=true \
 -e WINERY_REPOSITORY_PROVIDER=yaml \
 -e WINERY_REPOSITORY_URL=https://github.com/radon-h2020/radon-particles \
 opentosca/radon-gmt

Launch a browser: http://localhost:8080.

Note

To start Eclipse Winery based on an TOSCA XML repository layout, use the following command:

docker run -it -p 8080:8080 \
 -e PUBLIC_HOSTNAME=localhost \
 -e WINERY_REPOSITORY_URL=https://github.com/OpenTOSCA/tosca-definitions-public \
 opentosca/winery

Note

Make sure you regularly pull the latest images:

docker pull opentosca/radon-gmt:latest
or
docker pull opentosca/winery:latest

Use a custom TOSCA model repository

Problem:
You want to use an existing TOSCA model repository that you have cloned, e.g., to add new or adapt existing TOSCA types and blueprints in this Git repository.

Please follow the next instructions to mount an existing TOSCA model repository into the Eclipse Winery container.
This is useful if you want to save your modeling changes onto your Docker host machine.

Clone or create git repository on your local filesystem, e.g., by cloning https://github.com/radon-h2020/radon-particles.

Open a command prompt and execute the following command:

Warning

Replace <path_on_your_host> with the respective dirctory path on your host system.

docker run -it -p 8080:8080 \
 -e PUBLIC_HOSTNAME=localhost \
 -e WINERY_FEATURE_RADON=true \
 -e WINERY_REPOSITORY_PROVIDER=yaml \
 -v <path_on_your_host>:/var/repository \
 -u `id -u` \
 opentosca/radon-gmt

Launch a browser: http://localhost:8080.

Any change (create service template, modify or create node types) will be reflected on your host machine.
You are now able to commit your changes and push them to your own Git remote (e.g., using git push from a command-prompt).

Note

To start Eclipse Winery based on an TOSCA XML repository layout, use the following command:

docker run -it -p 8080:8080 \
 -e PUBLIC_HOSTNAME=localhost \
 -v <path_on_your_host>:/var/repository \
 opentosca/winery

Model and version your applications and company-specific types only

Problem:
You want to model applications based on actively maintained TOSCA type repositories but you want to version/save only your own application blueprints and company-specific types inside your (private) Git repository (GitHub, GitLab).

You are able to start Eclipse Winery in a so-called “multi-repository” setup where you can add several TOSCA type repositories that you can use for your application models.
However, with this setup, Eclipse Winery creates a specific “workspace” that only contains your company-specific types and application blueprints (separated by namespace).
You can then mount the created “workspace” to save your modeling results to your own Git remote.

Open a command prompt and execute the following command:

Warning

Replace <path_on_your_host> with a respective dirctory path on your host system.

docker run -it -p 8080:8080 \
 -e PUBLIC_HOSTNAME=localhost \
 -e WINERY_FEATURE_RADON=true \
 -e WINERY_REPOSITORY_PROVIDER=yaml \
 -e WINERY_DEPENDENT_REPOSITORIES="[{ \"name\" : \"RADON Particles\", \"url\" : \"https://github.com/radon-h2020/radon-particles.git\", \"branch\" : \"master\" }]" \
 -v <path_on_your_host>:/var/repository \
 -u `id -u` \
 opentosca/radon-gmt

Your created TOSCA service templates or company-specific TOSCA node types will be stored on your host machine.
You are now able to commit your changes and push them to your own Git remote (e.g., using git push from a command-prompt).

Launching with Docker Compose

Note

It is recommended that your host or virtual machine has at least 2GB of memory.

Install Docker and Docker Compose [https://docs.docker.com/compose].

Clone the repository:

git clone https://github.com/eclipse/winery
cd winery/deploy/compose

[Optional] Adapt the Docker Compose configuration to your needs, e.g., to mount a local TOSCA model repository.

Start Winery:

docker-compose up

Launch a browser: http://localhost:8080.

Modeling with Winery

Launch a browser and navigate to http://localhost:8080.

Modeling an Application

Eclipse Winery starts in the Service Template view.
In this view, users can create new TOSCA service template or maintain existing ones.

To create a new TOSCA service template click on Add new.
In the “Add new” pop up you can specify your template’s name, enable/disable versioning, and specify the namespace to be used.
For example, you may choose a namespace like com.example.blueprints to logically group your TOSCA service templates.

[image: ../../_images/1-CreateServiceTemplate.gif]

Warning

Do not use spaces in your service template name.
Use _ or - to separate names.

In the Service Template Detail view you can add some readme text and assign a respective license.
Further, to compose your application open the Topology Modeler by Topology Template > Open Editor.

Model Node Templates

In the editor, you can drag and drop existing TOSCA node types to the canvas to define a new TOSCA node template.
You can select a modeled node to modify its display name and additional data using the right pane.

[image: ../../_images/2-ModelNodeTemplates.gif]
You can change properties or add artifacts by enabling the Properties or Artifacts view in the header bar.

[image: ../../_images/3-AdaptPropertiesAddArtifacts.gif]

Define Relations Between Node Templates

Relationships in TOSCA (according to TOSCA YAML 1.3) are modeled using matching Requirements and Capabilities
(please refer to the standard to get more detailed information or checkout the Notes on TOSCA page).

In the Topology Modeler, you can enable the Requirements & Capabilities view in the header bar.
Then, open the Requirements of the source node and the Capabilities of the target node.
Finally, drag a respective relationship type (e.g., HostedOn) from the requirement (e.g., host) to a matching capability (e.g., host).

[image: ../../_images/4-ModelRelationships.gif]

Export CSAR

The TOSCA exchange format is a Cloud Service Archive (CSAR).
A CSAR is essentially a ZIP file following a certain directory layout and contains all necessary files and template to execute the deployment of the modeled application.

Open the Service Template view.
Search for your service template and open it.
In the Service Template Detail view you can click on Export either to Download the CSAR or to save it to the filesystem (<repository>/csars on your host system).

[image: ../../_images/5-ExportCsar.gif]

Node Type Development

Start Eclipse Winery as described in “Use a custom TOSCA model repository” of the Getting Started page.
This way, newly created Node Types will be reflected in the filesystem which is mounted into Winery’s Docker container.

Before you start, create a new branch:

git checkout -b <name>

You can push this branch to a Git origin to share your work with others or you could propose a pull-request to the original Git repository.

Modeling based on TOSCA XML (deprecated)

This guide shows an overview of how to model TOSCA node types and service templates using Winery.
Before starting this guide, please take a look at Miscellaneous Notes.

The following shows how to model new node types and how to use them at the modeling of a new service template.
In this example, the runtime Python3 shall be installed on an Ubuntu 14.04 virtual machine running on an Openstack infrastructure.
For this, we require three node types.
In this example, we model two node types, Python3 and Ubuntu 14.04, and assume that the OpenStack node type was previously modeled.

Creating a new Node Type

By selecting the tab Node Types, a list of available node types is shown.
To create a new node type, press the button Add new.

[image: ../../_images/1-AddNewNodeType.jpg]
This will open a dialog in which the Name, Component version, and Namespace of the new node type can be configured.

[image: ../../_images/2-AddNewNodeType.png]
Once the node type is created, it can be further configured through different tabs of its detailed view.

[image: ../../_images/3-AddNewNodeType.jpg]
For example, to add properties to the node type, select the tab Properties Definition.

[image: ../../_images/4-AddNewNodeType.jpg]
In this example, the Python3 node type does not require any properties.

Modeling the Node Type Interface

To specify what the Python3 node type should do, we define an interface and the operations provided by this interface.
An interface containing lifecycle operations (install, configure, start, stop, uninstall) can be automatically generated, however, any arbitrary interface can be created.

To generate a lifecycle interface, press Generate Lifecycle Interface and Save.
For the node type Python3, we only use the operation install.

[image: ../../_images/6-AddNewNodeType-AddInterface.jpg]

Modeling an Artifact Template for a Node Type Operation

Once the operations of a node type are defined, artifacts (e.g., shell scripts, .war files) implementing these operations need to be modeled.
In this example, we have a shell script to install Python3 on Ubuntu, which we model as an artifact template.

To create an artifact template, select the tab Other Elements, under the category Artifacts select the option Artifact Templates, and press the button Add new.

[image: ../../_images/7-AddNewArtifactTemplate.png]
[image: ../../_images/8-AddNewArtifactTemplate.png]
This will open a dialog in which the Name, Versioning, Type, and Namespace of the artifact template can be configured.
Assuming that some artifact types were previously modeled, choose the type ScriptArtifact.

[image: ../../_images/9-AddNewArtifactTemplate.png]
Once the artifact template is created, it can be further configured through different tabs of its detailed view.

[image: ../../_images/10-AddNewArtifactTemplate.png]
Finally, to load th install script to the artifact template, select the tab Files, and drop the file into the drop zone.

[image: ../../_images/11-AddNewArtifactTemplate.png]

Modeling the Node Type Implementation

To create a node type implementation, select the tab Other Elements, under the the category Implementations select the option Node Type Implementations, and press the button Add new.
This will open a dialog in which the Name, the corresponding node type, and Namespace of the node type implementation can be configured. By type, select the node type we created before.

[image: ../../_images/12-AddNewNodeTypeImplementation.png]
[image: ../../_images/13-AddNewNodeTypeImplementation.png]
To link the created artifact template to this node type implementation, select the tab Implementation Artifacts and press the button Add.
In the shown dialog, choose the option Link Artifact Template, then select the artifact template that was previously created.

[image: ../../_images/14-AddNewNodeTypeImplementation-LinkArtifactTemplate.png]
[image: ../../_images/15-AddNewNodeTypeImplementation-LinkArtifactTemplate.png]

Modeling the Ubuntu Node Type

The modeling of the Ubuntu node type is similar to the modeling of the Python3 node type.

[image: ../../_images/1-AddUbuntuNodeType.jpg]
[image: ../../_images/2-AddUbuntuNodeType.jpg]
However, the artifact templates for the Ubuntu 14.04 are .war files instead of shell scripts.
In this case, after defining the interfaces and operations of the Ubuntu node type, we can automatically generate a stub java maven project to build a .war file for a defined interface.
For this, press Generate Implementation Artifact. The node type implementation will be automatically generated as well.

[image: ../../_images/3-AddUbuntuNodeType.jpg]
[image: ../../_images/4-AddUbuntuNodeType.jpg]
[image: ../../_images/5-AddUbuntuNodeType.jpg]
[image: ../../_images/6-AddUbuntuNodeType.jpg]
After editing the generated stub project, we can built it and load the resulting .war file to the artifact template in the tab Files.

[image: ../../_images/7-AddUbuntuNodeType.jpg]

Creating the Service Template

To finally model the service template, at the tab Services Templates, press Add new.

[image: ../../_images/16-AddNewServiceTemplate.jpg]
Go to tab Topology Template and press the button Open Editor.

[image: ../../_images/17-AddNewServiceTemplate.jpg]
In the editor, the Palette on the left shows the available node types, which can be drag and dropped in the modeling area.

[image: ../../_images/18-AddNewServiceTemplate.jpg]
To model the relationship that the Python3 runtime is hosted on the Ubuntu virtual machine, click at the Python3 node template.
This will show a list of possible relationship types (previously modeled). Click in the option HostedOn and pull the shown arrow to the Ubuntu node template area, in order to connect these node templates.

[image: ../../_images/19-AddNewServiceTemplate.jpg]

Exporting a Service Template Package

To export the Service Template as a CSAR package, press Other, then Export CSAR.

[image: ../../_images/20-AddNewServiceTemplate.jpg]

Miscellaneous Notes

Properties of a Template can be either full XML or key/value based.
If key/value based, a wrapper XML element is required.
Since QNames have to be unique, Winery proposes as namespace the namespace of the template appended by propertiesdefinition/winery.
The name of the wrapper element is properties.

Note

Implementation hint: This is implemented in PropertiesDefinitionComponent.onCustomKeyValuePairSelected (TS) and org.eclipse.winery.model.tosca.TEntityType.getWinerysPropertiesDefinition (Java).

Uniqueness of QNames

Intentionally, a QName should be unique within the repository.
We did not follow this assumption, but only require that QNames are unique within a type.
That means, the repository allows {http://www.example.org}id for both a service template and a node type.
We introduced DefinitionsChildId uniquely identifying a TOSCA element.
Future versions might redesign the backend to use a QName as the unique key.

Component and Feature Overview

Components

[image: ../_images/components.png]

The TOSCA modeling tool Winery mainly consists of four parts:
(1) the templates, types, plans, and CSARs management,
(2) the TOSCA topology model editor,
(3) the BPMN4TOSCA management plan editor, and
(4) the repository to store
templates, types, plans, etc.

For the templates, types, plans, and CSARs management a user interface Templates, Types, Plans & CSARs Management UI that enables managing all TOSCA types, templates, and related artifacts is available.
This includes node types, relationship types, policy types, artifact types, artifact templates, and artifacts such as virtual machine images.
The Templates, Types, Plans & CSARs Management backend component provides functionality to access, store, or delete TOSCA elements in the Templates, Types, Plans & CSARs Repository which is a file system storing all available TOSCA elements.

The TOSCA Topology Model Editor enables the creation of service templates as directed graphs.
Service templates consists of instances of node types (node templates) and instances of relationship types (relationship templates).
They can be annotated with requirements and capabilities, properties, deployment artifacts, and policies.
Modeled service templates can be exported based on the TOSCA XML standard using the TOSCA XML Model Importer & Exporter or as YAML Model using the TOSCA YAML Model Importer & Exporter.
Because the internal data model of the Winery is based on the XML standard the TOSCA YAML Model to TOSCA XML Model Transformer is required to enable the import and export as XMl as well as YAML model.
The standard packaging format for service templates and all related TOSCA elements is a Cloud Service Archive (CSAR).
The CSAR Packager backend component is responsible to package all TOSCA elements in the archive.
The archive can be used by a TOSCA runtime for the deployment of the described cloud application.

The BPMN4TOSCA Management Plan Editor offers web-based creation of BPMN models with the TOSCA extension BPMN4TOSCA.
That means, the editor supports the BPMN elements and structures required by TOSCA plans and not the full set of BPMN.
The BPMN4TOSCA Management Plan Importer enables to load existing management plans to the Winery.
Because not only BPMN but also BPEL is a common modeling language for the automated workflow execution, a BPMN4TOSCA to BPEL Transformer component is available to support different modeling standards.
In case a running instance of the OpenTOSCA Container [https://github.com/OpenTOSCA/container] is available provisioning plans can be automatically generated by the BPEL Provisioning Plan Generator.

In addition to the described basis functionality of the TOSCA modeling tool Winery several advanced functionalities are provided:

	Consistency Check: This functionality enables to check whether a service template is valid according to the TOSCA
XML specification. This includes the definition of used node types and properties, the QNames, and if License and README files are available.
This supports the user to model valid service templates.

	XaaS Packager:
It enables the deployment of, e.g., a web application by reusing an existing service template and replacing the deployment artifact in the specified node type with the new deployment artifact.
The underlying platform or infrastructure services do not have to modeled for each application, predefined templates can be used.
More information can be found here.

	Topology Completion:
The TOSCA Topology Completion of Winery enables the user to model incomplete TOSCA Topology Templates and complete them automatically step-by-step by injecting new node templates to fulfill open requirements.
More information can be found here.

	Splitting & Matching:
The Split & Match function facilitates the redistribution of application components to target locations.
For this, the application components can be annotated with target labels to indicate the desired target locations.
In the Matching Templates Repository platform or infrastructure services can be defined as node templates or complete topology fragments for each target location.
Based on the desired split, the node templates of the original service template are split according to the labels and the matching node templates or topology fragments for hosting the application’s components in the target location are matched with the corresponding part of the split topology.
More information can be found here.

	Versioning & Difference Calculation:
To support version control of all TOSCA elements, including node types, artifact templates, service templates, and so on, the versioning component enables to add different versions of a TOSCA element and to release them after the development phase.
Released elements can not be modified to ensure consistency of specific versions in the ecosystem.
In addition, the differences between two versions can be calculated and visualized in the TOSCA Topology Model Editor.

	Accountability:
In collaborative development of application deployment models in business-critical scenarios (such as data-analysis), accountability is of high importance.
Thus, at CSAR export time, Winery enables to store the TOSCA meta file in a blockchain to identify the author of each exported version and whether a contained artifact is changed and by whom.
Winery also stores these artifacts versions in a decentralized storage which facilitates comparing them and visualizing the provenance of a specific resource.

	Compliance Checking (Compliance Rule Editor, Compliance Checker & Compliance Rules Repository):
The Topology Compliance Checking of Winery enables to describe restrictions, constraints, and requirements for Topology Templates in form of reusable topology-based Compliance Rules.
These rules can be modeled using the Compliance Rule Editor and stored in the Compliance Rules Repository.
Each rule consists of an Identifier and a Required Structure. If the defined identifier is contained in a topology, the required structure must be contained as well.
Furthermore, the Compliance Checker of Winery can be used to ensure that a given Topology Template is compliant to the current set of Compliance Rules.
More information can be found here.

	Key-based Policy Template Generator:
This functionality allows to generate security policy templates based on keys stored in the key manager.
Since a key-based security policy represents a key in a decoupled manner, the policy template only contains the details about the key, but not the key itself.
Modelers can use this functionality to simplify generation of policy templates which represent respective keys.

	Key & Access Control List (ACL) Management:
This functionality allows storing and generating symmetric keys and keypairs with self-signed certificates as well as specifying the access rules for keys for specific partner names.
It allows modelers to enforce modeled security requirements at CSAR import and export times.
However, this is an administrative functionality that potentially can be used for other purposes.

	Implementation Artifact Generator:
To specify what a node type should do, the user can define an interface and the operations provided by this interface.
Once the operations of a node type are defined, artifacts (e.g., shell scripts, .war files) implementing these operations need to be modeled.
With the Implementation Artifact Generator a stub java maven project to build a .war file for a defined interface is generated automatically.

	Grouping:
This functionality allows the grouping of node templates in the TOSCA topology model editor.
It enables the possibility to model groups within a topology, e.g., to describe that a policy only applies to a certain group of node templates, but not to all node templates of a topology template.

Features

	Splitting - Splitting functionality

	Target Allocation - Select best suited cloud provider for topologies

	Topology Completion - Topology completion overview

	XaaS Packager - Enables reusing modeled topologies as templates for single applications

	Compliance Checking - Enables compliance checking of topology templates based on reusable rules

	Implementation Artifact Generation - Shows how to generate and update an implementation artifact of type war

	Version Management - Shows how to update the version of a node template in the topology modeler

	Threat Modeling For NFV - Enables threat modeling capabilities and NFV-based mitigation recommendation

	Pattern-based Deployment and Configuration Models - Describes how PbDCMs can be crated and refined to executable deployment models

	Grouping - Describes the usage of the grouping functionality.

Winery CLI

The Winery CLI can be used to perform a consistency check for a given repository.

	Linux: docker run -it -v $(pwd):/root/winery-repository opentosca/winery-cli winery -v

	Windows: docker run -it -v ${PWD}:/root/winery-repository opentosca/winery-cli winery -v

Note

You may replace $(pwd) or ${PWD} with a directory location on your Docker host system.

Currently supported CLI arguments:

-h,--help prints this help
-p,--path <arg> use given path as repository path
-v,--verbose be verbose: output the checked elements

Frequently Asked Questions (FAQ)

Q: What is TOSCA?

A: The Topology and Orchestration Specification for Cloud Applications (TOSCA) is an OASIS standard to describe the deployment and management of applications in a portable manner.
Based on standard-compliant TOSCA runtimes, such as the OpenTOSCA ecosystem, the deployment and management can be automated.
For more details see our notes on TOSCA.

Q: What is a CSAR?

A: Cloud Service Archive (CSAR) is a packaging format defined by the TOSCA specification, which enables to bundle modeled TOSCA components in a self-contained manner.
Besides the TOSCA elements, the executable artifacts are packed as well.
In winery, you can model a service template and export it as a CSAR.
This CSAR can be loaded into the OpenTOSCA container in order to deploy your application.

Q: How can I start the OpenTOSCA ecosystem?

A: You can start the ecosystem by simply using Docker Compose or by using installation scripts.
Please refer to the OpenTOSCA getting started guide [https://www.opentosca.org/sites/use_opentosca.html] for more details.

Q: Is there an open repository for TOSCA types?

A: Yes! We provide a GitHub repository [https://github.com/OpenTOSCA/tosca-definitions-public] compatible to Winery, which contains several service templates, node types, etc.
To use this repository with a Winery docker container, please refer to the corresponding configuration instructions in the user guide.

Q: Where can I find a quick start guide to model Node Types?

A: You can find a Winery quick start guide about modeling node types in our user guide.

Q: How can I export my modeled application as a CSAR?

A: Select the tab Services Templates.
From the listed service templates, select the one you want to export.
In the detailed view, press Export and then choose the option CSAR (XML).

Q: My modeled Node Type got the suffix name wip what does this mean?

A: This means your node type has a work in progress (wip) version.
That is, this node type can and might be changed.
Once you are done, you can do a release of your node type.
In this way, Winery will not allow changes in the (released) node type anymore.

Q: How can I release a Node Type?

A: Select the tab Node Types.
From the listed node types, select the one you want to release.
In the detailed view, press Versions and then choose the option Release management version.

Q: On Mac OS X, I can neither delete a Node Template nor a Relationship Template.

A: Select the node template (or the relationship template) and press <kbd>fn</kbd> + <kbd>backspace</kbd>.

Q: Where can I get more help?

A: If you need support, contact us at opentosca@iaas.uni-stuttgart.de.

Q: How can I contribute to Winery?

A: Please see the contributing guide [https://github.com/eclipse/winery/blob/main/CONTRIBUTING.md].

Developer Guide

This document provides an index to all development guidelines and background information of Eclipse Winery.

	Recommended Reading

	Modules - Winery’s module structure

	Branches - How to branch

	Source Code Headers - Documentation about required source code headers

	REST API - How Winery’s REST API works

	Encoding - Information about how encoding is used in Winery

	ID System - Winery’s ID System

	Repository Layout - Documents the layout of the repository (stored as plain text files)

	Property Handling

	Configuration and Features

	TOSCA 1.0 Notes

	IDE Setup

	IntelliJ IDEA (recommended): config/IntelliJ IDEA

	Eclipse: config/Eclipse

	Winery GitHub Workflow

	Setup Winery Toolchain

	Winery and Docker

Getting Started

	Clone the repository: git clone https://github.com/eclipse/winery && cd winery.

	Build Eclipse Winery: mvn clean install -DskipTests (skipping the tests for a faster build).

	Setup your IDE:

	IntelliJ IDEA (recommended): config/IntelliJ IDEA

	Eclipse: config/Eclipse

	Go to Eclipse Winery Toolchain for further details

	Get familiar with Winery’s GitHub workflow

Notes on TOSCA

The Topology and Orchestration Specification for Cloud Applications (TOSCA) is a standard defined by the OASIS organization.
It defines a language to model (cloud) applications to automate their provisioning and management.
Thereby, TOSCA is vendor and technology independent and aims at defining applications in a portable and interoperable manner.

In general, there are two different flavours built in to TOSCA:
(i) declarative modeling and
(ii) imperative modeling.
While the traditional, declarative way to model an application is in the form of a Topology Template, i.e., a graph that describes the application’s components and their relations,
it also supports imperative workflows that exactly state the tasks and their order in which they have to be processed.
However, since we can automatically generate the imperative workflows based on the declarative model, Winery focuses mainly on the creation of the component’s types,
i.e., Node Types, and whole applications, i.e., Service Templates that add additional meta-information and wrap a Topology Template.

For more details about the standard, go to the specifications as linked below.
For more documentation about how to model an application using Winery and the OpenTOSCA ecosystem, see <../user/xml/index.rst>.

Recommended Readings

	Portable Cloud Services Using TOSCA. In: IEEE Internet Computing (2012) [http://doi.org/10.1109/MIC.2012.43] - Short overview.

	TOSCA: Portable Automated Deployment and Management of Cloud Applications. In: Advanced Web Services (2014) [http://doi.org/10.1007/978-1-4614-7535-4_22] - Longer overview.

	TOSCA Simple Profile in YAML Version 1.3 [http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html] - The simple profile in YAML.

See http://www.opentosca.org/sites/publications.html for a list of publications in the OpenTOSCA ecosystem.

TOSCA 1.3 YAML

	Official Specification [http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html]

	Class Diagram

	PlantUML

TOSCA 1.0 XML (Deprecated)

	Official Specification [http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html]

	Class Diagram

	PlantUML

Example TOSCA YAML Files

	Project RADON [https://github.com/radon-h2020/radon-particles]

Available TOSCA Implementations

	https://wiki.oasis-open.org/tosca/TOSCA-implementations

Architectural Decision Log

This lists the architectural decisions for Eclipse Winery.

	ADR-0000 - Use Markdown Architectural Decision Records

	ADR-0001 - Use filesystem as backend

	ADR-0002 - File system folder structure using type-namespace-id structure

	ADR-0003 - Double Encoded URLs

	ADR-0004 - OAuth with GitHub

	ADR-0005 - XML editor does not enforce validation

	ADR-0006 - Wrap properties in TOSCA properties element

	ADR-0007 - Custom URI for lifecycle interface

	ADR-0008 - No support for local git source clones

	ADR-0009 - Manual serialization of SnakeYAML

	ADR-0010 - TOSCA YAML deserialization using SnakeYAML

	ADR-0011 - Use Builder Pattern for Model Classes

	ADR-0012 - Provide Support for Custom Key-Value Properties

	ADR-0013 - Routes in the Repository Angular App

	ADR-0014 - Use Eclipse Orion as Editor

	ADR-0015 - Offer copying files from the source to the files folder

	ADR-0016 - Reflection test for TOSCA YAML builder

	ADR-0017 - Modify JAX-B generated classes

	ADR-0018 - Version Identifier in a Debian-like Form

	ADR-0019 - Versions of TOSCA elements in the name

	ADR-0020 - TOSCA Definitions contain excaly one element

	ADR-0021 - Use logback for logging

	ADR-0022 - tosca.model is more relaxed than the XSD

	ADR-0023 - Use Maven as build tool

	ADR-0024 - Use TravisCI for Continuous Integration

	ADR-0025 - Use same logback-test.xml for each sub project

	ADR-0026 - Store LICENSE and README.md in respective entity’s root folder in a CSAR

	ADR-0027 - Use dasherization for filenames

	ADR-0028 - Use hardcoded namespaces for threat modeling

	ADR-0029 - IPSec Algorithm Implementation

	ADR-0030 - Support of multiple repositories

	ADR-0031 - Reuse the pattern refinement implementation for pattern detection

The template.md contains the MADR template.
More information on MADR is available at https://adr.github.io/madr/.

Index

Use Markdown Architectural Decision Records

Context and Problem Statement

We want to record architectural decisions made in this project.
Which format and structure should these records follow?

Considered Options

	MADR [https://adr.github.io/madr/] 2.1.0 - The Markdown Architectural Decision Records

	Michael Nygard’s template [http://thinkrelevance.com/blog/2011/11/15/documenting-architecture-decisions] - The first incarnation of the term “ADR”

	Sustainable Architectural Decisions [https://www.infoq.com/articles/sustainable-architectural-design-decisions] - The Y-Statements

	Other templates listed at https://github.com/joelparkerhenderson/architecture_decision_record

	Formless - No conventions for file format and structure

Decision Outcome

Chosen option: “MADR 2.1.0”, because

	Implicit assumptions should be made explicit.
Design documentation is important to enable people understanding the decisions later on.
See also A rational design process: How and why to fake it [https://doi.org/10.1109/TSE.1986.6312940].

	The MADR format is lean and fits our development style.

	The MADR structure is comprehensible and facilitates usage & maintenance.

	The MADR project is vivid.

	Version 2.1.0 is the latest one available when starting to document ADRs.

Use filesystem as backend

Winery needs to store its contents.
These contents need to be shared.

Considered Alternatives

	Filesystem

	Database

Decision Outcome

	Chosen Alternative: Filesystem

Pros and Cons of the Alternatives

Filesystem

	+ Easy to manually change values

	+ No need to educate students on a certain database system

	+ Allows to use git as distributed version control system

	- Consistency check is hard to implement

	- Not transaction safe (concurrency)

Database

	+ Transaction safety

	+ Scalability

	- Not (directly) possible to use git as distributed version control system

	- Higher skills required

License

Copyright (c) 2017-2018 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

File system folder structure using type-namespace-id structure

Winery’s data is stored in a a file system ADR-0001.
The contents of the repository should be

	human readable

	machine processable

Considered Alternatives

	Folder structure using type-namespace-id

	Everything in one folder. Hash-based storing similar to git.

Decision Outcome

Chosen Alternative: Folders subdivided in type-namespace-id

The final file system layout itself is documented at RepositoryLayout.

human readable

Everything in one directory causes many files listed and thus humans will have difficulties to find the right file.

The folders in the top level are the TOSCA “components”, e.g., Node Type, Relationship Type, Service Template, …

The second structuring element are namespaces.
Namespaces are an established method to avoid naming conflicts [https://www.w3schools.com/xml/xml_namespaces.asp] and are a structuring element.
TOSCA is an open system and everyone can create Node Types.
One has no global control which names are given to Node Types.
Thus, there might be two different Node Types with the same name.
The namespaces provide a natural structuring and Winery reuses this idea.

The third structuring element are the ids of the respective definitions child (type, template, …):
Each element has an id contained in the respective namespace.
This id can be directly used as folder name.

Within each folder, the component-specific information is stored.

machine processable

Windows cannot create directories named http://www.example.com.
Therefore, the names have to be encoded [https://en.wikipedia.org/wiki/Character_encoding] so that an appropriate folder can be generated.

License

Copyright (c) 2017 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Double Encoded URLs

URLs should be human-readable, slashes are not allowed.
Encoded slahes are not enabled as default due to security reasons.

More information about encoding is available at dev/Encoding.md.

Considered Alternatives

	Using namespace prefixes in the URLs

	Single-encoded URLs and forcing the environment to be reconfigered

	Double-encoded URLs

Decision Outcome

	Chosen Alternative: Double-encoded URLs

Pros and Cons of the Alternatives

Using namespace prefixes in the URLs

	+ No encoding issues

	- Not globally unique: The URLs will change if the user reconfigures the namespace prefix

Single-encoded URLs

	+ Nice URLs

	- All hosting environments have to be configured accordingly. This can lead to security issues when running other applications in parallel.

Double-encoded URLs

	+ Nearly-nice URLs

	+ Hosting-environments do not have to be reconfigured

	- Double-encoding might cause headaches during the implementation

License

Copyright (c) 2017 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

OAuth with GitHub

UserStory:

In order to use (private) repositories instead of uploading all files into a Artifact Template, it is necessary to log in into GitHub.
Therefore, the OAuth flow is implented as follows:

	By clicking the Login with GitHub button, the browser gets redirected to GitHub for authentication.

	Login and authorize the Application to access the private repositories.

	Or, if the application was already been authorized, GitHub automatically continues with step 2

	GitHub answers with the status and code parameters which are parsed and send to our server to get the access token.

	Our server responses with the access token.

[image: OAuth flow diagram]

Considered Alternatives

	[ALTERNATIVE 1] Perform the whole login process in the browser

	[ALTERNATIVE 2] Perform the whole login process in the backend

	[ALTERNATIVE 3] Mix both, frontend and backend to get the access token

Decision Outcome

	Chosen Alternative: [ALTERNATIVE 3]
because we can easily protect our client secret on the server, store the token safely in the clients local storage and
do not need to keep the state at the server. Further, it is possible to save additional user information in the local
storage without the need for getting it every time from the server.

Pros and Cons of the Alternatives

[ALTERNATIVE 1]

	+ good separation of concerns

	+ fast and direct communication between client and OAuth provider

	- the client secret must be stored in the javascript code

[ALTERNATIVE 2]

	+ the client secret can be stored safely

	- the server needs to maintain a state to remember the current state

[ALTERNATIVE 3]

	+ pro arguments of both alternatives

	- more communication needed to perform the login

License

Copyright (c) 2017 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

XML editor does not enforce validation

UserStory: Winery offers editing the stored XML of the TOSCA definitions. What to do with validation?

Considered Alternatives

	Winery never creates an non-schema-conforming XML. For instance, the user has to create a topology template first before he is allowed to save the service template

	Winery generate random data to gain schema-conforming XML

	Winery generates non-schema-conforming XML, but assumes that the user makes it eventually valid. In casea the user uses the XML tab, the user knows what he does. Winery forces the user to generate schema-conforming in the XML editor.

	Winery generates non-schema-conforming XML and warns the user when the user uses the XML editor. Winery does NOT force the user to generate schema-conforming XML in the XML editor.

Decision Outcome

	Chosen Alternative: D

	This is in line with other editors: They allow to save, but warn if the file has compile errors, validation errors, …

License

Copyright (c) 2017 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Wrap properties in TOSCA properties element

When GETting/PUTting the properties of an entitty template, the content has to be serialized somehow.

Considered Alternatives

	Wrap properties in TOSCA properties element

	Use nested XML element (getAny())

Decision Outcome

	Chosen Alternative: Wrap properties in TOSCA properties element

	Receiving an XML element is not possible with JAX-B/JAX-RS as that setting relies on strong typing.

License

Copyright (c) 2017 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Custom URI for lifecycle interface

Winery can generate a lifecycle interface.
That interface has to take a URI for a name

Considered Alternatives

	http://opentosca.org/interfaces/lifecycle

	http://www.example.com/interfaces/lifecycle (from http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.html)

	tosca.interfaces.node.lifecycle.Standard (from http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html)

Decision Outcome

	Chosen Alternative: http://www.example.com/interfaces/lifecycle

	Although the alternative is not standardized, it is the one consistent with the primer for TOSCA 1.0.

License

Copyright (c) 2017 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

No support for local git source clones

A user wants to edit source files locally in his favourite IDE.
Therefore, he wants to use the usual ways to retrieve source files.
Typically, this is a git clone from a git repository having the respective source files.

A user does not want to clone the whole winery repository, as this might a) be too large b) not focused enough.
It would be beneficial to have the source of an artifact template available as git checkout.

The source files of an artifact implementation are currently directly editable in the winery once they are uploaded.
The only way to edit sources locally is to download and upload them again.
The solution for the user should be:

	easy to use

	scalable in terms of storage required in Winery’s repository

Considered Alternatives

	No support for local clones

	Git repositories as submodules

	Using filter-branch (https://help.github.com/articles/splitting-a-subfolder-out-into-a-new-repository/)

	Using git sparse-checkout to create a local clone (https://gist.github.com/sumardi/5559896)

Decision Outcome

	Chosen Alternative: no support for local edit

Since all alternatives require either too many additional git repositories or are very inconvenient to apply for the user,
we decided to not support any clone/push functionality.

Pros and Cons of the Alternatives

No support for local edit

	+ no changes needed

	- no local edit support

Git repositories as submodules

	+ simple git cloning possible

	+ additional repositories can be cloned into winery-repository as submodules

	+ separate version history

	- one repository for each implementation

	- each separate repository has to be created on the git remote of winery (e.g., GitHub)

Using filter-branch on sever’s side

	+ no changes needed in the existing repositories

	+ git filter-branch --prune-empty --subdirectory-filter allows to skip any subdirectory

	- server needs to execute very large filter commands for each user for each requested artifact template

	- the mapping back from the filtered repository to the full repository is cumbersome.

	- merge conflicts are not resolved by git tooling automatically

Using filter-branch on user’s side

	+ no changes needed in the existing repositories

	+ git filter-branch --prune-empty --subdirectory-filter allows to skip any subdirectory

	- user needs to execute very large filter commands

	- the mapping back from the filtered repository to the full repository is cumbersome.

	- requires the user to type the commands manually

git sparse checkout

	+ no changes needed in the existing repositories

	- requires the user to type the commands manually

License

Copyright (c) 2017 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Manual serialization of SnakeYAML

The TOSCA YAML files have to be read into a Java model (deserialized) and written from the Java model into files (serialized).

Considered Alternatives

	Manual serialization

	SnakeYAML [https://bitbucket.org/asomov/snakeyaml]

	jackson-dataformat-yaml [https://github.com/FasterXML/jackson-dataformat-yaml]

Decision Outcome

	Chosen Alternative: Manual serialization

	SnakeYAML does not support annotations for serialization

	jackson-dataformat-yaml seems not to support annotations, such as jackson-annotations [https://github.com/FasterXML/jackson-annotations]

License

Copyright (c) 2017 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

TOSCA YAML deserialization using SnakeYAML

The TOSCA YAML files have to be read into a Java model (deserialized) and written from the Java model into files (serialized).

Considered Alternatives

	SnakeYAML [https://bitbucket.org/asomov/snakeyaml] writing into intermediate model consisting of default Java types

	SnakeYAML writing into final Java model

	Manual reading

Decision Outcome

	Chosen Alternative: SnakeYAML writing into intermediate model consisting of default Java types

Pros and Cons of the Alternatives

SnakeYAML writing into intermediate model consisting of default Java types

	+ Basic YAML parsing can be done using SnakeYAML

	+ TOSCA Java classes can be filled directly

	- Programming effort for conversion

SnakeYAML writing into final Java model

	+ Established library

	+ Less error prone

	- SnakeYAML has to be adapted to be able to convert YAML into TOSCA models

	- SnakeYAML is not well-prepared for adaptions

	- SnakeYAML has issues to write into complex Java classes (which are not Java base types). E.g., List of Maps. - see https://bitbucket.org/asomov/snakeyaml/issues/361/list-does-not-create-property-objects

	- huge effort, first attempt did not result in a working converter

Manual reading

	+ Can write directly into Java model

	- Special cases of YAML have to be handled manually

	- Error prone

License

Copyright (c) 2017 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Use Builder Pattern for Model Classes

Model classes should be instantiable simple without using large constructors.

Considered Alternatives

	Builders [https://en.wikipedia.org/wiki/Builder_pattern]

	Setters, getters and default constructor

	Large constructors

	Factories

Decision Outcome

	Chosen Alternative: Builders

	Flexible

	Simple for complex objects

	Extensions cause problems (solved with generic builders)

Generic Builders

Generic Builders are used to enable safe method chaining for Builders with extend other Builders.
Another discussion is made at stackoverflow [https://stackoverflow.com/a/5818701/8235252].

The method self() is necessary because all setter methods should return the Builder used for instantiation and not the builder that is extended. self() cannot be replace by this because the expected type is <T> and casting to <T> results in warnings.

Builders which are not abstract and are extended by other builders are generic and implement the self() method by casting this to <T>. To reduce warnings this casting is only used in this case.

Example:

// part of ExtensibleElements.Builder
public abstract static class Builder<T extends Builder<T>> {
 private List<TDocumentation> documentation;

 // setter returns generic <T>
 public T setDocumentation(List<TDocumentation> documentation) {
 this.documentation = documentation;
 // return this; => IncompatibleType exception either cast with warnings or use self() method
 return self();
 }

 // overwritten method
 public abstract T self();
}

// part of TEntityType.Builder
public abstract static class Builder<T extends Builder<T>> extends TExtensibleElements.Builder<T> {
	
}

// part of TNodeType.Builder
public static class Builder extends TEntityType.Builder<Builder> {
 @Override
 public Builder self() {
 return this;
 }
}

License

Copyright (c) 2017 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Provide Support for Custom Key-Value Properties

Most properties are key/value

Considered Alternatives

	Provide support for custom key-value properties

	Support XML-only

Decision Outcome

	Chosen Alternative: Provide support for custom key-value properties

	Nice UI experience

License

Copyright (c) 2017 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Routes in the Repository Angular App

Considered Alternatives

	Using Wildcards for the ToscaTypes

	Explicitly Define the Routes for Each ToscaType

Decision Outcome

	Chosen Alternative: Explicitly Define the Routes for Each ToscaType

	By choosing this alternative, the whole project gets more type save by the (lightweight) trade-off
of maintaining a list of all available MainRoutes in the ToscaTypes enum. It is now harder to add
new main routes, because you need to add extra Modules and RoutingModules for each type. However,
because of this decision, it is easier to define invalid routes which lead to a 404 - Not Found error page.

Pros and Cons of the Alternatives

Using Wildcards for the ToscaTypes

	+ Easy to add new MainRoutes and SubRoutes for multiple ToscaTypes at once

	+ All available sub-routes come “for free” in each component

	- Invalid routes can be reached

	- More difficult to understand

Explicitly Define the Routes for Each ToscaType

	+ Easier to understand and therefore eases the start for new developers

	+ Clear responsibilities

	+ Implicit better type safety

	+ Only valid routes are available for each ToscaType

	- More files need to be extended/created in order to add new routes

License

Copyright (c) 2017 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Use Eclipse Orion as Editor

Editor should provide syntax highlighting and work in browser.

Considered Alternatives

	Eclipse Orion [https://wiki.eclipse.org/Orion]

	Eclipse Che [https://www.eclipse.org/che/]

	Codeanywhere [https://codeanywhere.com]

	Cloud9 [https://c9.io/]

	Codiad [http://codiad.com/]

	Theia [https://github.com/theia-ide/theia]

Decision Outcome

	Chosen Alternative: Eclipse Orion

	Reasons:

	Extension of other IDEs either too time consuming or not possible.

	Communication between other IDEs and Winery unclear.

	Eclipse Orion was already used in the project.

For more details see the ultimate comparison [https://github.com/ultimate-comparisons/ultimate-webIDE-comparison].

License

Copyright (c) 2017 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Offer copying files from the source to the files folder

Forces:

	Source code needs to be versioned in Winery

	Support for scripting languages do not need any processing and only need to be copied as they are

	Support for compiled languages need to be processed before copying

Considered Alternatives

	Copying the sources to files as they are

	Require external tooling to go from source to files

Decision Outcome

	Chosen Alternative: Copying the sources as they are

	For supporting compiled languages, it is relied on an external IDE (see ADR-0014).
This IDE stores the files in the “source” folder and manages the copying to the files folder.
Thus, the only left support is for scripting languages.
In that case, the source can be directly used as files (”binary”) in an artifact template.

Pros and Cons of the Alternatives

Just copying the sources as they are

	+ Easy to implement

	+ Sufficient for scripts/files that do not need compilation

	+ Intuitive for the user, since the source == target

	- More User interaction required if IDE does not support upload to files. That means, java files must first be downloaded than compiled and than uploaded to files.

Require external tooling to go from source to files

	+ With one click the user can copy and compile the files

	- Needs a runtime/compiler

	- See ADR-0014

Reflection test for TOSCA YAML builder

The TOSCA YAML builder converts Java Objects to instances of TOSCA YAML classes. To get clean an good instances validation is needed. Reflection test are Junit5 test which take yaml service templates with metadata that describes what assertions should be made for the resulting TOSCA YAML class instances.

...
metadata:
 assert: |
 repositories.rp1.url = http://github.com/kleinech
 node_types.ntp1.requirements.0.rqr1.capability = cbt1
...

Each assert line contains a keyname and a value.
[context and problem statement]
[decision drivers | forces]

Considered Alternatives

	reflection tests

	manual test

Decision Outcome

	Chosen Alternative: reflection tests

	Only alternative, which meets simplifies the effort to make complete tests

Pros and Cons of the Alternatives

reflection tests

A reflection tests contains all information that is needed in the metadata of the test file.

Example:

tosca_definitions_version: tosca_simple_yaml_1_3

metadata:
 description: This test contains a valid service template (Not Complete)
 targetNamespace: http://www.example.org/ns/simple/yaml/1.3/test
 tosca.version: 1.1
 exception: None
 assert-typeof: |
 repositories.rp1 = TRepositoryDefinition
 assert: |
 metadata.description = This test contains a valid service template (Not Complete)
 metadata.targetNamespace = http://www.example.org/ns/simple/yaml/1.3/test
 description = Description of service template
 repositories.rp1.url = http://github.com/kleinech

description: Description of service template

repositories:
 rp1: http://github.com/kleinech

The example above is converted from the yaml representation to the TOSCA YAML data model
and the result is has one typeof assert and four value asserts.

If one assert fails the test for this file fails but all other asserts are tested too.

License

Copyright (c) 2017 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Modify JAX-B generated classes

	Date
	Status

	2018-02-05
	Accepted

	OASIS provides an XSD file, where Java classes can be generated from.

	There are extension to TOSCA, which should made available easily.

Considered Options

	Modify the generated classes

	Add a wrapper model based an a separate package with generated classes only.

Decision Outcome

Chosen option: “Modfiy the generated classes”, because

	The JAX-B code generation was not updated to fit modern Java 8 code style

	Allows modifications added easily

	TOSCA XSD is not likely to be updated quickly. And if it is updated, there is a huge update, where the whole model code has to be adapted.

License

Copyright (c) 2017 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Version Identifier in a Debian-like Form

The version identifier must be defined with its parts and meanings.

The version must support three parts:

	The part of which specifies the version of the modeled component

	A management version specifying the TOSCA version (w)

	A work-in-progress (wip) version to clearly identify development steps

Considered Options

	Debian like schema

	Fedora like schema

	OpenSUSE like schema

Decision Outcome

Chosen Option: “Debian like schema”, because it supports “pre-versions” such as the required wip version

Positive Consequences

	wip version is always smaller than the actual release: example_1.0-w2-wip4 < example_1.0-w2

License

Copyright (c) 2017 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Versions of TOSCA elements in the name

In order to enable the versioning of TOSCA elements, the version corresponding to one element
must be saved in a TOSCA compliant way.

Forces:

	TOSCA compliant

	The version identifier must be detectable in the XML file

Considered Options

	Version in the name

	Version in the namespace

	Save version externally

Decision Outcome

	Chosen Option: version in the name/id because it is compliant to the TOSCA specification and shows the version
directly in the XML file.

	Easiest and best fit regarding compliance

Pros and Cons of the Options

Version in the name

	Good, because it is consistent to the TOSCA specification

	Good, because even from outside of the winery, definitions can be detected in the specific version on first sight

	Good and bad, because it requires a deep copy of all files and definitions on creating a new version*

	Bad, because Introduces naming conventions to the naming of components: ‘_’ are not allowed anymore*

Version in the namespace

	Good, because it is easy and well established method in XML

	Good, because the definition’s name/id stays intact

	Bad, because it implies that all elements in the corresponding namespace have the same version

	Bad, because it is usually used to specify the version of the XML’s vocabulary only

Save version externally

	Good, because it requires less disk space than

	Bad, because the version is not detectable in the XML

License

Copyright (c) 2017 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

TOSCA Definitions contain excaly one element

Context and Problem Statement

How should TOSCA data be stored?

Considered Options

	Allow exactly one TOSCA Definitions child in a definition

	Allow multiple TOSCA Definitions children in a definition

Decision Outcome

Chosen option: “Allow exactly one TOSCA Definitions child in a definition”, because

	Definitions are not modeled as explicit element. Only the nested elements are handled by Winery.

	That means, it is not possible to specify custom definitions bundling a customized subset of available elements.

License

Copyright (c) 2018 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Use logback for logging

	Status: Accepted

	Date: 2018-06-04

Context and Problem Statement

Each application should log.

Considered Options

	Logback [https://logback.qos.ch/]

Decision Outcome

Chosen option: “Logback”, because it

	natively implements SLF4J and

	SLF4J offers bridging legacy APIs [https://www.slf4j.org/legacy.html] and thus allows to unify logging.

Positive Consequences:

	Single point for logging configuration

	Logging over SLF4J API

Negative consequences:

	Developers have to include following dependencies in their pom.xml, because the concrete logging framework should be chosen at the project executed by a user (or on a server).
Tests still require logging and thus the concrete logging framework has to be included for tests.

 org.slf4j
 slf4j-api
 1.7.25
 compile

 ch.qos.logback
 logback-classic
 1.2.3
 test

 org.slf4j
 jcl-over-slf4j
 1.7.25
 test

	For easy logging, it is enough to include logback libraries at WEB-INF/lib [https://logback.qos.ch/manual/loggingSeparation.html#easy].
Thus, following dependency has to be included at REST services:

 ch.qos.logback
 logback-classic
 1.2.3
 compile

	Any logging wrapper has also has to be included at “user-facing” ends (CLI or WAR).
Note that it cannot be included at libraries, because it leads to an infinite loop [https://www.slf4j.org/legacy.html#jclRecursion].

 org.slf4j
 jcl-over-slf4j
 1.7.25
 compile

	Legacy/old libraries depending on a certain logging framework have to be loaded with an exclusion of the logging framework.

	The documentation of Winery has to state that slf4j was chosen and that the logging has to be configured accordingly.

License

Copyright (c) 2017 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

tosca.model is more relaxed than the XSD

	Status: Accepted

	Date: 2018-06-06

Context and Problem Statement

There is a data model for a) serializing/deserializing the XML contents, b) internal backend handling, c) working with algorithms, d) communicating with the REST service.
Currently, this is the same model.
The UI might generate non-valid XML files (in the sence of not passing the XSD validation).
For instance, if a user creates a service template, that service template does not contain a topology template.
Furthermore, a topolgoy template needs to have at least one node template.

Considered Options

	Keep one model and allow non-XSD validating models in org.eclipse.winery.model.tosca

	Only allow (XSD-) validating models

	Develop two models

Decision Outcome

Chosen option: “Keep one model and allow non-XSD validating models in org.eclipse.winery.model.tosca”, because

	XSD is meant for “executable” TOSCA definitions, not for intermediate modeling results

	currently too much effort to develop two models

License

Copyright (c) 2018 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Use Maven as build tool

Context and Problem Statement

Which build tool should be used?

Considered Options

	Maven [https://maven.apache.org/]

	Gradle [https://gradle.org/]

	Ant [https://ant.apache.org/]

Decision Outcome

Chosen option: “Maven”, because

	None of Gradle’s customizability and the overhead in setup that comes with that is required.

	The structure the comes with Maven makes the build files easier to understand compared to ANT.

Pros and Cons of the Options

Maven

	Good, because most of Eclipse projects use Maven for building.

	Good, because there is a plugin for almost everything [https://www.slant.co/versus/2107/11592/~apache-maven_vs_gradle]

	Good, because it has good integration with third party tools [http://pages.zeroturnaround.com/rs/zeroturnaround/images/java-build-tools-part-2.pdf]

	Good, because it has robust performance [http://pages.zeroturnaround.com/rs/zeroturnaround/images/java-build-tools-part-2.pdf]

	Good, because it has a high popularity [http://pages.zeroturnaround.com/rs/zeroturnaround/images/java-build-tools-part-2.pdf]

	Good, if one favors declarative over imperative [https://www.slant.co/versus/2107/11592/~apache-maven_vs_gradle]

	Bad, because getting a dependency list is not straight forward [https://stackoverflow.com/q/1677473/873282]

	Bad, because it based on a fixed and linear model of phases [https://dzone.com/articles/gradle-vs-maven]

	Bad, because it is hard to customize [https://www.slant.co/versus/2107/11592/~apache-maven_vs_gradle]

	Bad, because it needs plugins for everything [https://www.slant.co/versus/2107/11592/~apache-maven_vs_gradle]

	Bad, because it is verbose leading to huge build files [https://technologyconversations.com/2014/06/18/build-tools/]

Gradle

	Good, because its build scripts are short [https://technologyconversations.com/2014/06/18/build-tools/]

	Good, because it follows the convention over configuration approach [https://www.safaribooksonline.com/library/view/building-and-testing/9781449306816/ch04.html]

	Good, because it offers a graph-based task dependencies [https://dzone.com/articles/gradle-vs-maven]

	Good, because it is easy to customize [http://pages.zeroturnaround.com/rs/zeroturnaround/images/java-build-tools-part-2.pdf]

	Good, because it offers custom dependency scopes [https://gradle.org/maven-vs-gradle/]

	Good, because it has good community support [https://linuxhint.com/ant-vs-maven-vs-gradle/]

	Good, because its performance can be 100 times more than maven’s performance [https://gradle.org/gradle-vs-maven-performance/].

	Bad, because not that many plugins are available/maintained yet [https://blog.philipphauer.de/moving-back-from-gradle-to-maven/]

	Bad, because it lacks a wide variety of application server integrations [http://pages.zeroturnaround.com/rs/zeroturnaround/images/java-build-tools-part-2.pdf]

	Bad, because it has a medium popularity [http://pages.zeroturnaround.com/rs/zeroturnaround/images/java-build-tools-part-2.pdf]

	Bad, because it allows custom build scripts which need to be debugged [https://www.softwareyoga.com/10-reasons-why-we-chose-maven-over-gradle/]

Ant

	Good, because it offers a lot of control over the build process [https://technologyconversations.com/2014/06/18/build-tools/]

	Good, because it has an agile dependency manager [https://blog.alejandrocelaya.com/2014/02/22/dependency-management-in-java-projects-with-ant-and-ivy/]

	Good, because it has a low learning curve [https://technologyconversations.com/2014/06/18/build-tools/]

	Bad, because build scripts can quickly become huge [https://technologyconversations.com/2014/06/18/build-tools/]

	Bad, because everything has to be written from scratch [http://www.baeldung.com/ant-maven-gradle]

	Bad, because no conventions are enforced which can make it hard to understand someone else’s build script [http://www.baeldung.com/ant-maven-gradle]

	Bad, because it has nearly no community support [http://pages.zeroturnaround.com/rs/zeroturnaround/images/java-build-tools-part-2.pdf]

	Bad, because it has a low popularity [http://pages.zeroturnaround.com/rs/zeroturnaround/images/java-build-tools-part-2.pdf]

	Bad, because it offers too much freedom [https://www.slant.co/versus/2106/2107/~apache-ant_vs_apache-maven]

Links

	GADR: https://github.com/adr/gadr-java/blob/master/gadr-java–build-tool.md [https://github.com/adr/gadr-java/blob/master/gadr-java--build-tool]

License

Copyright (c) 2018 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Use TravisCI for Continuous Integration

	Status: Accepted

	Date: 2018-06-27

Context and Problem Statement

Winery needs to be build using continuous integration.

Decision Drivers

	Easy to configure CI solution

	For free CI solution

	Only important output should be logged

Considered Options

	TravisCI [https://docs.travis-ci.com/]

	CircleCI [https://circleci.com/docs/2.0/]

	Eclipse Common Build Infrastructure - Jenkins [https://wiki.eclipse.org/Jenkins]

Decision Outcome

Chosen option: “TravisCI”, because

	The build worklfow on Jenkins is hard to configure

	Even though CircleCI offers to use a Docker image as basis and then executing arbitrary commands

	Even though CircleCI offers to collect test results and presents them in aggregated form

	Even though CircleCI offers to collect build artifacts and offers them to logged in users

	Even though TravisCI sometimes throttles down builds (due to heavy load in the Eclipse organization)

	CircleCI cannot be used at Eclipse projects [https://bugs.eclipse.org/bugs/show_bug.cgi?id=536180]

License

Copyright (c) 2018 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Use same logback-test.xml for each sub project

Context and Problem Statement

When executing tests, logback is loaded as logging framework.
Logback in testing mode is configured using logback-test.xml.
In case logback is not configured, it does not output anything.

Decision Drivers

	Ease of use for developers

Considered Options

	Same logback-test.xml for each sub project

	Different, individually configured logback-test.xml files for each sub project

Decision Outcome

Chosen option: “Use same logback-test.xml for each sub project”, because

	During development, the “local” logback-test.xml file can be adjusted to the needs

	During continuous integration, the output should contain warnings and errors only and not any debug information

Positive Consequences

	When modifying logback-test.xml, a developer just has to copy it over to the other sub projects without thinking which change to propagate to which sub project.

Negative Consequences

	There are log level configurations for unused classes in some sub projects.
For instance com.sun.jersey is configured in all projects, but is only used in the REST API project.

License

Copyright (c) 2018 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Store LICENSE and README.md in respective entity’s root folder in a CSAR

Context and Problem Statement

LICENSE and README.md have to be stored in a standardized location when CSARs are exported.

Decision Drivers

	Standardized CSAR structure

Considered Options

	Store these files in a root folder of a respective entity

	Store these files in separate folders in a root folder of a respective entity

Decision Outcome

Chosen option: “Store these files in a root folder of a respective entity”, because

	Less visual clutter

	In repository, these files are not separated and stored together with the definition file

Positive Consequences

	Standardized access to LICENSE and README.md files in any Winery-exported CSAR

Negative Consequences

	Puts additional restrictions on the CSAR’s structure

License

Copyright (c) 2018 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Use dasherization for filenames

Context and Problem Statement

Graphics files have to take a consistent file name

Decision Drivers

	Easy to process by Jekyll

	No WTFs at the creators

Considered Options

	Dasherization [https://softwareengineering.stackexchange.com/a/104476/52607] (e.g., architecture-bpmn4tosca.png)

	Camel Case (e.g., ArchitectureBPMN4TOSCA.png)

Decision Outcome

Chosen option: “Dasherization”, because

	clear separation of parts of the name

	consistent to other URLs (which are typically lowercase)

Links

	GADR: https://github.com/adr/gadr-misc/blob/master/gadr–filename-convention.md

License

Copyright (c) 2018 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Semantics in the Model

	Status: [accepted]

	Deciders: Karoline Saatkamp, Lukas Harznetter,

	Date: 2018-02-07

Technical Story: In order to solve solutions detected by ToPS [https://github.com/OpenTOSCA/ToPS], we must have semantics.
These semantics must be known for the algorithms.

Context and Problem Statement

In the problem detection and solving approach by Saatkamp et al., detected problems in a topology are solved by specific algorithms.
These algorithms must know some semantics in order to perform correctly.

Therefore, collection of predefined and known elements which the algorithms can work on is required.

Considered Options

	Predefined elements in constants

	Predefined elements from configuration

Decision Outcome

Chosen option: “Predefined elements in constants”.
However, in near future, we could make this configurable by using the new configuration which is currently implemented by some students.

License

Copyright (c) 2019 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Use hardcoded namespaces for threat modeling

Context and Problem Statement

The threat modeling approach relies on pairs of threats and mitigations.
Each “threat” should be referenced by one particular “mitigation”.

Considered Options

	hardcoding the namespaces, default node types and properties.

	dynamic namespaces similar to “pattern namespaces” for threats and mitigations

Decision Outcome

Chosen option: hardcoded namespaces, due to ease of implementation and static nature of the problem

Positive Consequences

In the context of threat modeling multiple different types of threats/mitigations are not necesaary so a minimal base type that carries the required properties (reference) can be used and extended

License

Copyright (c) 2018 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

IPSec Algorithm Implementation

	Status: [accepted]

	Deciders: Lukas Harzenetter

	Date: 2019-02-07

Context and Problem Statement

In the problem detection and solving approach by Saatkamp et al., detected problems in a topology are solved by specific algorithms.
These algorithms must know some semantics in order to perform correctly.

Concretely: The IPSec algorithm must know some kind of abstract Virtual Machine (VM) Node Type, since it replaces unsecure VMs with secure VMs that open a secure connection on the IP level.

Considered Options for VM Nodes

	VMs collected in a special namespace

	Abstract VM Node Type

Decision Outcome for VM Nodes

Chosen option: “Abstract VM Node Type” since TOSCA allows inheritance and inheritance creates mor semantic meaning.

Considered Option for Secure VMs

	Secure VMs collected in a special namespace

	Abstract Secure VM Node Type

	Annotate Secure Types with a Tag

Decision Outome for Secure VMs

Chosen option: “Secure VMs collected in a special namspace” since they are special kinds of the “normal” VMs, they should inherit from them (and consequently from the abstract VM type mentioned above) to create a meaningful semantics.
However, instead of creating a special namespace, this should be changed to “Annotate Secure Types with a Tag” in near future.

License

Copyright (c) 2019 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Context and Problem Statement

The execution time of an online crawler of the DeployableComponents project can not be foreseen, because it depends on the accessed online service.
An architecture, which considers this problem, is needed.

Considered Options

	Sequential execution of crawler and analyzer

	Asynchronous execution with defined execution time

	Asynchronous execution with defined number of dockerfiles

	Asynchronous round-based background execution

Decision Outcome

Chosen option: “Asynchronous round-based background execution”, because best performance with best fitting execution procedure to the expected use case.

Positive Consequences

	good performance

	use case of hugh source data set is fulfilled

Negative consequences

	more complex architecture

Pros and Cons of the Options

Sequential execution of crawler and analyzer

	Good, because simple architecture

	Bad, because bad performance (synchronous)

Asynchronous execution with defined execution time

Asynchronous execution, which terminates after a predefined time.

	Good, because good performance

	Bad, because does not fulfill the expected use case of hugh amount of dockerfiles, which should be crawled (needs to be called several times)

	Bad, because can’t not provide intermediate results

Asynchronous execution with defined number of dockerfiles

Asynchronous execution, which terminates after a predefined number of dockerfiles is crawled.

	Good, because good performance

	Bad, because does not fulfill the expected use case of hugh amount of dockerfiles, which should be crawled (needs to be called several times). The actual number is irrelevant, it just needs to be hugh.

Asynchronous round-based background execution

Asynchronous execution, which never terminates by it’s own (must be terminated from outside). Provides intermediate results after every round. Round length (number of crawled dockerfiles) can be defined.

	Good, because good performance

	Good, because fulfills the expected use case of hugh amount of dockerfiles, which should be crawled. Round length can be high for best performance or lower for more frequent intermediate results.

	Bad, because complex architecture

License

Copyright (c) 2019 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Support of multiple repositories

	Status: pending

	Deciders: Lukas Harzenetter [https://github.com/lharzenetter], Sascha Zeller [https://github.com/zesaro]

	Date: 2019-04-18

Technical Story: Pull Request 124 [https://github.com/OpenTOSCA/winery/pull/124]

Context and Problem Statement

To help developers obtain TOSCA elements in a more practical way, an approach to supporting multiple repositories distributed across different servers is presented here.
The result provides the ability to define a set of URLs and load them into the current winery-repository.

Considered Options

	Merge the content of the repositories inside the winery-repository

	Use a similar approach like npm and declare each repository as a module

Decision Outcome

Option 2 was chosen to manage each repository individually. This makes it possible to use existing version control systems in the individual repositories.

The repositories are structured as follows.
[image: Repository Structure]

Positive Consequences

	User can search for elements online and load a repository using the url

	It’s enough to send a URL instead of a CSAR

	Manage each repository independently

	The origin and the version history of a repository can be checked

	The possibility to contribute directly to the development of a repository

Negative consequences

	User is forced to define namespaces in Namespaces.json.

	Additional configuration file (repositories.json)

Usage

	Make sure the winery-repository is empty (or move existing files into a new folder called “workspace”)

	Create a repositories.json in the root directory of the repository

	Create a new object inside the json file

	For each repository you want to add

	Use the URL of the repository as a String element

	Use the Branch name as a value for the element (also as String)

	Separate each element with a comma

	Example:

{
 "https://github.com/OpenTOSCA/tosca-definitions-public" : "master",
 "https://github.com/winery/test-repository" : "master"
}

	Start Server and UI

License

Copyright (c) 2019 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Reuse the pattern refinement implementation for pattern detection

Context and Problem Statement

To create an executable deployment model, the pattern refinement process replaces a matching subgraph with the Refinement Structure of a PRM.
To create a PbDCM, the pattern detection process replaces a matching subgraph with the Detector of a PRM.
The replacement procedure is identical for both processes, only the structures used for the replacement differ.
Therefore, the implementation of the pattern refinement process should be reused to implement the pattern detection process.

Decision Drivers

	Avoid duplicate code

	Avoid introducing errors and inconsistencies during reimplementation

Considered Options

	Swap the Detector of all PRMs with their Refinement Structures

	Reimplementation

	Use common interface

Decision Outcome

Chosen option: “Swap the Detector of all PRMs with their Refinement Structures”, because reimplementation introduces too much duplicate code and a common interface requires a lot of boilerplate code while also decreasing readability.

Positive Consequences

	Complete pattern refinement implementation can be reused

Negative consequences

	Readability and understandability decreases

Pros and Cons of the Options

Swap the Detector of all PRMs with their Refinement Structures

In the backend, the elements of the PRMs retrieved from the repository are swapped, .i.e, the Detector of each PRM is set to its Refinement Structure, its Refinement Structure is set to its Detector, and all mappings are adapted accordingly.

	Good, because complete refinement code can be reused

	Bad, because decreases readability and understandability

Reimplementation

The complete pattern refinement code is reimplemented for pattern detection, i.e., the reimplemented code considers the Detector during the replacement, redirection of Relations using the Relation Mappings, and retaining elements using the Stay Mappings.

	Good, because better readability

	Bad, because results in a lot of duplicate code

	Bad, because the reimplemented code can contain errors and inconsistencies already fixed in the refinement implementation

Use common interface

Implement an interface which returns the Refinement Structure of a PRM for the replacement procedure of the pattern refinement process and returns the Detector of a PRM during the pattern detection process.

	Good, because refinement code can be reused

	Bad, because requires a lot of boilerplate code

	Bad, because it decreases readability

License

Copyright (c) 2021 Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

[short title of solved problem and solution]

	Status: [accepted | superseeded by ADR-0000 | deprecated | …]

	Deciders: [list everyone involved in the decision]

	Date: [YYYY-MM-DD when the decision was last updated]

Technical Story: [description | ticket/issue URL]

Context and Problem Statement

[Describe the context and problem statement, e.g., in free form using two to three sentences. You may want to articulate the problem in form of a question.]

Decision Drivers

	[driver 1, e.g., a force, facing concern, …]

	[driver 2, e.g., a force, facing concern, …]

	…

Considered Options

	[option 1]

	[option 2]

	[option 3]

	…

Decision Outcome

Chosen option: “[option 1]”, because [justification. e.g., only option, which meets k.o. criterion decision driver | which resolves force force | … | comes out best (see below)].

Positive Consequences

	[e.g., improvement of quality attribute satisfaction, follow-up decisions required, …]

	…

Negative consequences

	[e.g., compromising quality attribute, follow-up decisions required, …]

	…

Pros and Cons of the Options

[option 1]

[example | description | pointer to more information | …]

	Good, because [argument a]

	Good, because [argument b]

	Bad, because [argument c]

	…

[option 2]

[example | description | pointer to more information | …]

	Good, because [argument a]

	Good, because [argument b]

	Bad, because [argument c]

	…

[option 3]

[example | description | pointer to more information | …]

	Good, because [argument a]

	Good, because [argument b]

	Bad, because [argument c]

	…

Links

	[Link type] [Link to ADR]

	…

Eclipse Configuration HowTo

We have issues with removing trailing spaces at Eclipse.
Eclipse adds spaces between methods.
Since we cannot fix this issue, we either ask you to use IntelliJ or to review each commit not to include unnecessary spaces.

This howto is based on [Eclipse IDE for Java EE Developers].
First of all, generate a war to have all dependencies fetched by maven.

Recommended plugins

	AnyEdit [http://andrei.gmxhome.de/anyedit/] for ensuring that tabs are always used

	Configure: Window -> Preferences -> General / Editors / AnyEdit Tools -> “Auto - Convert EXCLUSION file list” -> “Add filter” -> “*.java”, “Convert…”: 4 spaces for a tab

Optional plugins

	Eclipse Code Recommenders [http://www.eclipse.org/recommenders/]

	VJET JavaScript IDE [http://www.eclipse.org/proposals/webtools.vjet/]

Make Winery projects known to Eclipse

	Import all projects

	Use “Existing Maven Projects”. mvn eclips:m2eclipse currently does not enable “maven” in eclipse.

	At org.eclipse.winery.repository and org.eclipse.winery.topologymodeler:

	Right click -> Properties -> JavaScript -> Include Path -> Source -> Expand folder -> Select “Excluded” -> “Edit…”

	Exclusion Patterns: Add multiple -> Select “3rd party” -> “OK”

	Exclusion Patterns: Add multiple -> Select “components” -> “OK”

	“Finish” -> “OK”

Setup Tomcat

	Open servers window: Window -> Show View -> Other -> Server -> Servers

	New server wizard… -> Apache -> Tomcat v7.0 Server -> Next -> Winery -> Add -> Finish

	Rename the Server to “Apache Tomcat v7.0”

Now you can see the Tomcat v7.0 Server at localhost [Stopped, Republish] in your server window.
Select it and click on the green play button in the window.

Now, Winery can be viewed at http://localhost:8080/winery-ui/

Setup Code Style

Java -> Code Style -> Clean Up: cleanup.xml
Formatter -> formatter_settings.xml
Code Templates: codetemplates.xml

Java -> Editor -> Templates: java_editor_templates.xml

Save Actions: follow eclipse_save_actions*.png:

[image: ../../_images/eclipse_save_actions.png]
[image: ../../_images/eclipse_save_actions_1_code_organizing.png]
[image: ../../_images/eclipse_save_actions_2_code_style.png]
[image: ../../_images/eclipse_save_actions_3_member_accesses.png]
[image: ../../_images/eclipse_save_actions_4_missing_code.png]
[image: ../../_images/eclipse_save_actions_5_unnecessary_code.png]

Further hints

The repository location can be changed:
Copy winery.properties to path-to-workspace\.metadata\.plugins\org.eclipse.wst.server.core\tmp0\wtpwebapps\winery.

Update Copyright Header

Steps to update copyright headers:

	Define scopes to apply the copy right header to:

	Open properties Ctrl Alt S and search for Scopes

	Select packages for the scope and click Include Recursively
[image: ../../_images/SetScopes.png]

	Apply copyright settings to Scope:

	Open properties ctrl alt s and search for Copyright

	Add copyright entry and apply previously created scope
[image: ../../_images/Copyright.png]

	Create copyright profile:

	Open Settings/Editor/Copyright/’Copyright Profiles’

	Add copyright text without borders

	Set Copyright year dynamically with ${today.year}

	Add copyright regex (Acquired by selecting the copyright header in intellij editor and pressing ctrl shift f)

	Allow replacing old copyright identified by regex seems not to work
[image: ../../_images/CopyrightProfiles.png]

	Adjust copyright formatting settings

	Open Settings/Editor/Copyright/Formatting

	Change to Use block comments with Prefix each line, set Relative Location to Before other commentsand increase Separator before/after Length to 81
[image: ../../_images/CopyrightFormat.png]

	Delete previous copyright header manually (Replace with empty String)

	Right click package and choose Update Copyright..

	Check files for duplicated copyright header (occurs if copyright regex not set correctly)

IntelliJ Configuration

Preparation: Install IntelliJ

	Get a JetBrains Ultimate License. For students: Visit https://www.jetbrains.com/student.

	Install JetBrains Toolbox [https://www.jetbrains.com/toolbox/]: choco install jetbrainstoolbox and choco pin add -n jetbrainstoolbox, because JetBrains does an auto update

	Install “IntelliJ IDEA Ultimate” using the JetBrains Toolbox.

Preparation: Build Winery

Build Winery to have all dependencies fetched by Maven: mvn clean install -DskipTests.

Setup IntelliJ

	At start of IntelliJ, browse to the root pom.xml and open it as project.

	Enable checkstyle: Follow the shown steps and apply them in IntelliJ
[image: ../../_images/activate-checkstyle.gif]

	Install the IntelliJ Checkstyle Plugin [https://plugins.jetbrains.com/plugin/1065-checkstyle-idea].
It can be found via plug-in repository (Settings -> Plugins -> Browse repositories)

	Open the Settings (by pressing Ctrl + Alt + S)

	Go to Other Settings -> CheckStyle.

	Click on the green plus and add checkstyle.xml from the root of the Winery code repository.

	Configure the code style

	Open the Settings (by pressing Ctrl + Alt + S)

	Go to “Editor > Code Style”

	Click “Manage…” (right of “Scheme:”)

	Click “Import Scheme”

	Choose “IntelliJ IDEA code style XML”

	Navigate to intellij-idea-code-style.xml. It is located in docs/config/IntelliJ IDEA.

	Press “OK”

	You will see a message “Winery configuration settings were imported”.

	Press “OK”

	Press “Close”

	Press “OK”

	Setup code headers to be inserted automatically

	Open the Settings (by pressing Ctrl + Alt + S)

	Go to Editor > Copyright > Copyright Profiles

	Click the green plus

	Name “Winery”

	Copyright text from Source Code Headers

	Go to Editor > Copyright > Formatting

	Adjust copyright formatting settings

	Change to Use block comments with Prefix each line

	Set Relative Location to Before other comments

	Increase Separator before/after Length to 81

	[image: GitAutoCheck]

	Go to Editor > Copyright

	Set “Winery” as Default project copyright

	Press “OK”

	Setup Apache Tomcat

	Download Tomcat 9.0 from https://tomcat.apache.org/download-90.cgi.
Choose “zip” (e.g., http://mirror.synyx.de/apache/tomcat/tomcat-9/v9.0.7/bin/apache-tomcat-9.0.7.zip).

	Extract it to c:\apache. Result: C:\apache\apache-tomcat-9.0.7.

	[image: ../../_images/run-step1-edit-configuration.png]

	[image: ../../_images/run-step2-add-new-configuration.png]

	[image: ../../_images/run-step3-add-tomcat.png]

	[image: ../../_images/run-step4-configure-tomcat-button.png]

	[image: config/IntelliJ IDEA/figures/run-step5-add-appserver-button.png.png]

	[image: ../../_images/run-step6-set-apache-tomcat-directory.png]

	Press OK
[image: ../../_images/run-step7-confirm.png]

 Branches

Branches

The main branch is always compiling and all tests should go through.
It contains the most recent improvements.
All other branches are real development branches and might event not compile.

There are no explicit branches for stable versions as winery is currently in development-only mode.

We try to follow following naming conventions:

	Bugfix: fix/issue-NNN or fix/SHORT-TITLE if fixing an issue with a number or give it a title

	Feature: feature/issue-NNN or feature/SHORT-TITLE

	WIP: wip/SHORT-TITLE for ‘work in progress’ without an issue and you know won’t be finished soon

	Thesis: thesis/SHORT-THESIS-TITLE, replace SHORT-THESIS-TITLE with something meaningful

	EnPro: prefix fix, feature, wip (see below) with enpro/

	StuPro: prefix fix, feature, wip (see below) with stupro/

See https://gist.github.com/revett/88ee5abf5a9a097b4c88 for a discussion and other ideas.

 Configuration and Features

Configuration and Features

Implemented in the package org.eclipse.winery.common.configuration.
The configuration is YAML based and called winery.yml.
The default Configuration is contained in the resource folder.

Adding new Features

To add a new feature to the configuration one has to simply add it hierarchically under the features tab in the winery.yml file.
This has to be done both in the winery.yml file in the filesystem and in the default configuration winery.yml file in the resources folder.

ui:
 features:
 splitting: true
 completion: true
 patternRefinement: true
 compliance: true
 accountability: true
 nfv: true
 endpoints:
 container: http://localhost:1337
 workflowmodeler: http://localhost:8080/winery-workflowmodeler
 topologymodeler: http://localhost:8080/winery-topologymodeler
 repositoryApiUrl: http://localhost:8080/winery
 repositoryUiUrl: http://localhost:8080/#
repository:
 provider: file
 repositoryRoot: ""
 git:
 clientSecret: secret
 password: default
 clientID: id
 autocommit: false
 username: default

If the feature has been added to the YAML Configuration the getUiConfig() method of the Environments class will return a UiConfigurationObject Instance which has the added feature as a map entry in the features map attribute. This can be accessed with the getFeatures() method.
The key of the feature entry is the same name that was added to the winery.yml file.

Accessing the Configuration in the Backend

The configuration is split into different objects.
The UiConfigurationObject contains the feature flags and endpoints.
The RepositoryConfigurationObject contains all the repository settings including a GitConfigurationObject.
The GitConfigurationObject contains all settings associated with Git.
Each of these configuration objects can be accessed through a getter in the Environments class, e.g. getGitConfig().
When the changes to a configuration object shall be persisted, the Environments class offers a save method, in which the changed configuration object has to be passed as the parameter.

Accessing the Configuration in the Frontend

In the org.eclipse.winery.repository.rest.resources.admin.AdminTopResource.java are two methods implemented which are used to send the configuration to the frontend getConfig() and get updates to the configuration from the frontend setConfig().
In the frontend the WineryRepositoryConfigurationService manages those resources.
Injecting the service where the configuration is needed provides the configuration as the configuration attribute of the WineryRepositoryConfigurationService.
Therefore the feature has to be added as a boolean attribute to the WineryConfiguration interface.

export interface WineryConfiguration {
 features: {
 splitting: boolean;
 completion: boolean;
 compliance: boolean;
 patternRefinement: boolean;
 accountability: boolean;
 nfv: boolean;
 };
 endpoints: {
 container: String;
 workflowmodeler: String;
 topologymodeler: String;
 };
}

Using Feature Toggles

The FeatureToggleDirective offers a way to use the configuration to toggle features on or off dynamically.
Before using the directive in any html file it has to be imported first into the corresponding module.
Additionally, an enum in the component where the feature toggle will be used has to be created and declared with the FeatureEnum.

export enum FeatureEnum {
 Splitting = 'splitting', Completion = 'completion', Compliance = 'compliance',
 PatternRefinement = 'patternRefinement', Accountability = 'accountability', NFV = 'nfv',
 newFeature = 'newFeature'
}

Finally, the directive can be used to toggle the feature according to the set configuration.

<div *wineryRepositoryFeatureToggle="configEnum.Compliance">

 Docker

Docker

Build and Run Winery Container

docker build -t winery .
docker run -p 8080:8080 winery

Open a browser and navigate to http://localhost:8080.

Build and Run the Winery CLI Container

docker build -t winery-cli -f Dockerfile.cli .
docker run -v <path>:/root/winery-repository -it winery-cli winery -v

 Encoding of folder names, namespaces, and IDs in Winery

Encoding of folder names, namespaces, and IDs in Winery

Outdated Although the information about double-encoding is correct, the UI has been re-implemented using Angular, which introduces an additional layer of URLs.

Example to understand double encoding of URIs in Winery

In file systems, characters / and : are not allowed source [https://stackoverflow.com/a/31976060/873282].
The design decision is that all files (node types, imports in CSARs, …) are stored and structured using directories with human readable names.
Therefore, the namespace URI must be used in an encoded form, otherwise the name would not be valid (http://www...).
An example for such a directory name is http%3A%2F%2Fwww.w3.org%2F2001%2FXMLSchema.
Since (1) namespaces are URIs and (2) percent-encoded [https://tools.ietf.org/html/rfc3986#section-2.1] URIs form valid directory names, URL encoding is used.

For a better understanding we distinguish two cases:

(1) calling a URL and
(2) linking to the location of a TOSCA import in a TOSCA XML file contained in the CSAR

(1) Calling a URL

For example, to query node type information the following URL can be used: http://localhost:8080/winery/nodetypes/http%253A%252F%252Fopentosca.org%252Fnodetypes/Java8.
The convention for URLs in the Winery are: winery/type/namespace/id (see REST API).

	winery: http://localhost:8080/winery

	type: nodetypes

	namespace: http%253A%252F%252Fopentosca.org%252Fnodetypes

	id: Java8

We have a closer look to the namespace part http%253A%252F%252Fopentosca.org%252Fnodetypes:
The ‘/’ and ‘:’ of the URI are double percent-encoded [https://tools.ietf.org/html/rfc3986#section-2.1], i.e.,
: is encoded –> %3A is encoded –> %253A (% is encoded –> %25).

If no double encoding would be used http://localhost:8080/winery/nodetypes/http%3A%2F%2Fopentosca.org%252Fnodetypes/Java8 would be the used URL.
Web servers such as
Apache Tomcat 1 [https://stackoverflow.com/a/14600740/873282], 2 [https://stackoverflow.com/a/41559969/873282],
Apache 3 [https://stackoverflow.com/a/9933890/873282], 4 [https://stackoverflow.com/a/3235361/873282],
nginx 5 [https://stackoverflow.com/a/37584637/873282], and
JBoss 6 [https://stackoverflow.com/a/5628325/873282]
forbid this due to security issues.
See 7 [http://en.wikipedia.org/wiki/Directory_traversal_attack], 8 [http://www.tomcatexpert.com/blog/2011/11/02/best-practices-securing-apache-tomcat-7], and 9 [https://stackoverflow.com/a/28113090/873282].

Note that %2F and / are not the same in a URI.
See Example 2 in W3C’s URI recommendations [https://www.w3.org/Addressing/URL/4_URI_Recommentations.html].

(2) Encoding of Directory Names

As already mentioned, URLs used in directory names must be encoded.
In XML files the location of an tosca:import is, for instance given as: ../imports/http%253A%252F%252Fwww.w3.org%252F2001%252FXMLSchema/http%253A%252F%252Fopentosca.org%252Fproperties/TopicProperties/TopicProperties.xsd, which represents the path of the file.
The attribute location is of type anyURI, i.e., this part has to be decoded [https://tools.ietf.org/html/rfc3986#section-2.4].
If only single encoding is used like ../imports/http%3A%2F%2Fwww.w3.org... the decoding would lead to ../imports/http://www.w3.org..., which is not a valid URI and also not a valid file name.

Summary: Because the namespace is part of the used URI and the namespace itself is a URI too, double encoding is required.

 Eclipse Foundation processes

Eclipse Foundation processes

Create CQ:

	Create a Git patch

git format-patch -1 <sha>

More details [https://stackoverflow.com/questions/6658313/how-to-generate-a-git-patch-for-a-specific-commit/6658352#6658352]

	Got to CQ create page:

https://projects.eclipse.org/projects/soa.winery/cq/create

	Select “Project Content” and follow the instructions

	Copy CQ details from PR (title, description)

	Use link to PR for “location” field

	Attach patch file to the created CQ

	Wait for completion ;)

 Eclipse Winery GitHub Workflow

Eclipse Winery GitHub Workflow

	Steps for working on a topic

	GitHub - Prepare Final Pull Request

	GitHub - Create Final Pull Request

	GitHub - Change Final Pull Request

	GitHub - After Pull Request Got Merged

	Excursus: Git

This presents the tool chain used for creating and updating a pull request on GitHub.

For the general setup, please go to Eclipse Winery Toolchain.

Steps for working on a topic

Main idea: Separate branch for each topic (fix a bug, add functionality) and accordingly named.
See https://guides.github.com/introduction/flow/index.html for more information.

	Sync with latest changes on upstream (especially main branch): git fetch upstream --prune.

	Create branch based on upstream/main and make it known publicly:

	git checkout upstream/main

	git checkout -b [name]
Branch naming patterns:

	Bugfix: fix/SHORT-TITLE, e.g., fix/deletion-of-namespaces

	Feature: feature/SHORT-TITLE, e.g., feature/drag-and-drop-for-bpmn4tosca

	Thesis: thesis/SHORT-THESIS-TITLE. Replace SHORT-THESIS-TITLE with something meaningful, e.g., thesis/versioning

	EnPro: prefix fix or feature (see above) with enpro/, e.g., enpro/fix/policy-rendering

	StuPro: prefix fix or feature (see below) with stupro/, e.g., stupro/feature/github-oauth

	git push --set-upstream origin [name]

	Do you your fist commit. Don’t forget to sign-off the commit (Ctrl+S in Git Gui).

	Push the changes to origin: git push.

	Create [WIP] Pull Request.

	Go to https://github.com/opentosca/winery 🡒 Pull Request

	Change the “base branch” to OpenTOSCA/winery
[image: ../_images/ChangeBaseForkToOpentoscaWinery.png]

	Fill in the title of the Pull Request following the pattern [WIP] Title of the thesis/work/target

	Fill in the provided description form

	Add [x] to the items listed in the write field

	Check the description in the Preview and send the Pull Request

	There are automatic checks in place
[image: ../_images/AutoCheckGit.png]

	If there is a red cross, click in respective “Details” and fix them

You keep working and discuss with your supervisor how things go.

After each working day, do the following:

	Commit. Don’t forget to sign the commit (Ctrl+S in Git Gui).

	git push

	Keep your branch updated with upstream/main:

	git fetch upstream

	git merge upstream/main

	Resolve conflicts - if there are some. See https://www.jetbrains.com/help/idea/resolving-conflicts.html for a documentation when using IntellIJ.

	git push

GitHub - Prepare Final Pull Request

The aim of these steps to have a single commit.
This is required by the Eclipse process for checking for intellectual property (IP process for short).

Before commencing these steps, check with your supervisor

Formal Requirements

	http://wiki.eclipse.org/Development_Resources/Contributing_via_Git 🡒 Create an account WITH THE SAME EMAIL AS USED FOR THE COMMITS (can also be checked in gitk [https://lostechies.com/joshuaflanagan/2010/09/03/use-gitk-to-understand-git/])

	Sign the Contributor Agreement electronically

Git Steps: Ensure that a single commit is created

	git fetch upstream - fetches all updates from https://github.com/eclipse/winery (”upstream”) to the local git storage

	git merge upstream/main - merges all updates from upstream to the local branch

	(Resolve merge conflicts) - required if there are conflicting changes

	Commit & Push with signed commit message (Ctrl+S in Git Gui) - this ensures that you have the changes backuped in case something goes wrong at the next steps

	git reset upstream/main - this prepares that all commits can be squashed together:
The local checkout (”working tree”) is left untouched, but the “pointer” of the current branch is reset to upstream/main.
Now, Git Gui shows the difference between upstream/main and your changes.

	Check changes in Git Gui:

	Each change you wanted: Is it recognized?

	At each file: Is the copyright information in the header OK?

	Check if you are listed in the NOTICE [https://github.com/eclipse/winery/blob/main/NOTICE] file as a contributor with the correct year

	Are there too much changed lines? 🡒 Do not stage spurious lines to the commit (e.g., tab to spaces, …)

	Are there too much changed files? 🡒 Do not stage files you did not intend to change (e.g., build.gradle if you did not touch build.gradle at all)

	Check again the style (!)

	(Don’t forget RESCAN to see the current changes)

	Add description as new markdown file to to docs/index.md (if helpful)

	Press “Stage to Commit” 🡒 all changes are staged to Commit

	Sign the Commit Message (Ctrl+S in Git Gui)

	In the case of multiple authors: Add each additional author with Co-authored-by.
See also in the Eclipse Handbook [https://www.eclipse.org/projects/handbook/#resources-commit].
Example:

Co-authored-by: Some Bodyelse <somebodyelse@nowhere.com>
Signed-off-by: Some Body <somebody@somewhere.com>

	Commit & Push with “force overwrite” since you changed the branch: git push -f

GitHub - Create Final Pull Request

Attention: Commits on the same branch done after the Pull Request is sent are still part of the Pull Request (!)

	Go to https://github.com/eclipse/winery 🡒 Pull Request

	Fill in the title of the Pull Request and give a more detailed description of the changes or added functionality

	In case of UI changes: Add screenshots

	Add [x] to the items listed in the write field

	Check the description in the Preview and send the Pull Request

	Close your Pull Request at OpenTOSCA/winery with a comment referencing the full URL of the new Pull Request, e.g. Follow up at https://github.com/eclipse/winery/pull/212.

GitHub - Change Final Pull Request

	There are automatic checks in place
[image: ../_images/AutoCheckGit.png]

	If there is a red cross, click in respective “Details” and fix them

	In case of missing code quality, … changes are requested by a committer (person controlling the pull request process)

	FOR WINERY THE FOLLOWING APPLIES:

	Open Git Gui

	Make requested changes in your code (don’t forget to RESCAN)

	Commit

	Push

	Wait for a second review

	In case everything is fine, squash the commits into one.
See GitHub - Prepare Pull Request.
Then, do a force push (git push -f).

GitHub - After Pull Request Got Merged

	Delete the branch locally.

	The branch on origin (https://github.com/OpenTOSCA/winery) is deleted by the maintainer having done the merge.

Excursus: Git

[image: ../_images/ExcursusGit.png]

Please see also use gitk to understand git [https://lostechies.com/joshuaflanagan/2010/09/03/use-gitk-to-understand-git/] to understand the settings in git.

 Winery’s ID System

Winery’s ID System

The general idea behind the storage of Winery is that each entity comes with an id.
The id is either self contained or references a parent id, where the element is nested in.
All Ids inherit from GenericId.

[image: ../_images/GenericIdHierarchy.png]

The child AdminId is used for all administrative elements required for internal management.
DummyParentForGeneratedXSDRef is required during the export of generated XML Schema Definitions due to the use of Winery’s key/value properties.
DefinitionsChildId is the parent element for all TOSCA Elements which may be defined directly as child of a “Definitions” element.
All other elements have “TOSCAElementId” as parent.

AdminId

[image: ../_images/AdminIdHierarchy.png]

NamespacesId is used as container for a mapping file from namespace prefixes to namespaces.
TypesId is the parent element of all types user can set.
These are not node types etc., but ConstraintTypes (for Constraints), PlanLanguages (for plans), and PlanTypes (for plans).
The inclusion of PlanLanguages is due to reuse of the class AbstractTypesManager for plan languages.
TOSCA does not restrict these enumerations.
Therefore, Winery manages all known types for itself.

DefinitionsChildId

This ID class is used for all entities directly nested in a TDefinitions element.
They all have a namespace and an id attribute.
This is ensured by DefinitionsChildId.

[image: ../_images/ComponentIdHierarchy.png]

EntityTemplateId collects all Entity Templates directly nested in a Definitions element.
As a result, the ids of NodeTemplates or RelationshipTemplates do not inherit from EntityTemplateId.
They are contained in a Service Template and not directly in the Definitions element.
Thus, the only children of EntityTemplateId are ArtifactTemplateId, PolicyTemplateId, and ServiceTemplateId.

EntityTypeId collects all Entity Types directly nested in a TDefinitions element.
These are IDs for ArtifactTypes, CapabilityTypes, PolicyTypes, RequirementTypes, NodeTypes and RelationshipTypes.
Node Types and Relationship Types have the direct parent TopologyGraphElementTypeId as these two types form the types of components of the topology graph.

EntityTypeImplementationId is the parent id for NodeTypeImplementationId and RelationshipTypeImplementationId and thus subsumes the two possible entities which can be implementations.

GenericImportId is an artificial entity.
It is used to be able to store imports of an imported CSAR.
These imports might be XSD definitions, but also WSDL files.

 Winery’s Module Structure

Winery’s Module Structure

OUTDATED

This section provides a short overview on all projects Winery consists of.

org.eclipse.winery.common

This project contains classes used by the repository and topology modeler projects.
It contains constants, the id system, interface definitions for repository access and the datatype to manage Winery’s extended key/value properties.

org.eclipse.winery.highlevelrestapi

This project contains an API to communicate with REST services. It provides an abstraction layer above Apache
Commons HTTPClient. It is used by projects generated by the IA generator to upload compiled
implementations as implementation artifacts.

org.eclipse.winery.generators.ia

This project contains the generator which generates a NodeType implementation based on a NodeType
interface.

org.eclipse.winery.model.csar.toscametafile

This project contains the model for the file “Tosca.meta”.

org.eclipse.winery.model.selfservice

This project contains the model for the self service portal.
It is used by the Vinothek [BBKL14] to display user defined data.

org.eclipse.winery.model.tosca

This project contains a JAX B generated model of the XSD of OASIS TOSCA v1.0. The XSD hat to be modified to
enable proper referencing and use. An Implementation Artifactmay carry a “name” attribute. The contents of
properties of Boundary Definitions are processed in “lax” mode.

org.eclipse.winery.repository

This is the heart of Winery. This project hosts the repository, where all entities of TOSCA are stored and
managed. It realizes the components “Type, Template, and Artifact Management” and “Repository” (Figure 1).

org.eclipse.winery.repository.client

This project hosts a client using the REST API of the repository and offering a Java object based client to the
Winery repository.

org.eclipse.winery.repository.configuration

This project contains configurations used in the repository. Example are GitHub OAuth credentials. They must be
configured in order to use them locally!

org.eclipse.winery.repository.rest

This project contains the REST resources.

Project org.eclipse.winery.repository.ui

This project contains the Angular ui for the repository. Here, the whole repository can be managed and
configured. The repository-ui documentation is generated during npm run build process and can be found in
org.eclipse.winery.repository.ui/dist/doc/ folder.

org.eclipse.winery.topologymodeler

This part of Winery enables modeling topologies graphically. It realizes the component “Topology Modeler”
(Figure 1).

 Winery’s Property Handling

Winery’s Property Handling

Based Policy Type and Policy Template

Using the ‘propertiesDefinitionComponent’ in the Frontend

In this section we will take a look at how the propertiesDefinition component can be used in the winery application.

The frontend is build using the web framework angular2. An Angular2 application is typically build out of so called components. Each component should be responsible for a specific task, including the UI part as well as handling the data needed to fullfill the specific task. Those components are then plugged into each other or put together to create an application. Therefore it is adviced to build a component such that it can be reused within the application.

The following will explain the use of the propertiesDefinition component by example of its usage in the policy type instance.

To make the frontend part of the winery application as modular, component based and generic as possible, the following architecture was chosen (see here [https://github.com/eclipse/winery/blob/main/docs/dev/RepositoryUI]).
The instance component is responsible for rendering most of the types/templates. As a result of that, the components required for a type/template are being injected into the instance components router outlet. This is true for the policy type as well.

Here is one example on how to use the propertiesDefinition component by example of the policy type (instance component).

	Insert a tab ‘Properties Definition’ into the sub-header of the instance component for the policy type.
Therefor, open the file instance.service.ts [https://github.com/OpenTOSCA/winery/blob/cdbce161aac69c5a861a9f2be3b7e7d809674186/org.eclipse.winery.repository.ui/src/app/instance/instance.service.ts#L1] and insert a ‘Properties Definition’ entry into the submenu array for the policy type in the getSubMenuByResource() [https://github.com/OpenTOSCA/winery/blob/cdbce161aac69c5a861a9f2be3b7e7d809674186/org.eclipse.winery.repository.ui/src/app/instance/instance.service.ts#L39] method.

Example(current winery implementation):

case ToscaTypes.PolicyType:
 subMenu = ['README', 'LICENSE', 'Language', 'Applies To', 'Properties Definition', 'Inheritance', 'Templates', 'Documentation', 'XML'];
 break;

This will create a clickable entry in the submenu.

	Next we set up the routing of the policy type such that the ‘propertiesDefinition’ component is loaded when the corresponding entry in the submenu is clicked.
Navigate to the file policyTypeRouter.module.ts [https://github.com/OpenTOSCA/winery/blob/cdbce161aac69c5a861a9f2be3b7e7d809674186/org.eclipse.winery.repository.ui/src/app/wineryMainModules/policyTypes/policyTypeRouter.module.ts#L1] and add an entry to the ‘children’ array of the policyTypeRoutes [https://github.com/OpenTOSCA/winery/blob/cdbce161aac69c5a861a9f2be3b7e7d809674186/org.eclipse.winery.repository.ui/src/app/wineryMainModules/policyTypes/policyTypeRouter.module.ts#L33] that will tell the router to load the correct component.

The entry looks like this:

{path: 'propertiesdefinition', component: PropertiesDefinitionComponent},

This is necessary so the router will inject the ‘propertiesDefinitionComponent’ into the <router-outlet></router-outlet> of the instance component when the ‘Properties Definition’ submenu is clicked.
Further, clicking on the ‘Properties Definition’ submenu will append ‘/propertiesdefinition’ to the end of the current URL and send a GET request to the URL when the submenu is clicked. The handling of received data as well as the data to be sent is done by the propertiesDefinitionComponent.

Policy Type Creation

Winery GUI

	click on other elements -> policy types -> add new

	choose a fitting name

	select one of the available namespaces or type in a new namespace

	click the ‘Add’ button

GUI Screenshot
[image: create policy modal]

The Winery application creates the policy type, however the policy type does not yet contain any properties. This can be observed in the xml representation of the policy type as well as in the GUI.

Resulting XML

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Definitions targetNamespace="http://www.example.org/tosca/policytypes" id="winery-defs-for_policytypes1-DemoPolicy" xmlns="http://docs.oasis-open.org/tosca/ns/2011/12" xmlns:selfservice="http://www.eclipse.org/winery/model/selfservice" xmlns:winery="http://www.opentosca.org/winery/extensions/tosca/2013/02/12" xmlns:testwineryopentoscaorg="http://test.winery.opentosca.org">
 <PolicyType name="DemoPolicy" targetNamespace="http://www.example.org/tosca/policytypes"/>
</Definitions>

Property Creation

Winery GUI

	click on ‘Properties Definition’ in the sub header and choose the ‘custom key/value’ radio button.

GUI Screenshot:
[image: ../_images/CustomKeyValueProperty.png]

	click on the ‘Add’ button

	again, choose a fitting name

	select a namespace or create a new one

	click the ‘Add’ button

GUI Screenshot
[image: ../_images/CustomKeyValuePropertyModal.png]

The application shows the newly created property in the table.

[image: ../_images/CustomKeyValuePropertyCreated.png]

click the ‘save’ to save the property to the policy type.

After adding a property to the policy type the resulting xml looks like this:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Definitions targetNamespace="http://www.example.org/tosca/policytypes" id="winery-defs-for_policytypes1-DemoPolicy" xmlns="http://docs.oasis-open.org/tosca/ns/2011/12" xmlns:selfservice="http://www.eclipse.org/winery/model/selfservice" xmlns:winery="http://www.opentosca.org/winery/extensions/tosca/2013/02/12" xmlns:testwineryopentoscaorg="http://test.winery.opentosca.org">
 <PolicyType name="DemoPolicy" targetNamespace="http://www.example.org/tosca/policytypes">
 <winery:PropertiesDefinition elementname="properties" namespace="http://www.example.org/tosca/policytypes/propertiesdefinition/winery">
 <winery:properties>
 <winery:key>prop1</winery:key>
 <winery:type>xsd:string</winery:type>
 </winery:properties>
 </winery:PropertiesDefinition>
 </PolicyType>
</Definitions>

Winery Backend

The request to create a property is received by the OnPost() [https://github.com/OpenTOSCA/winery/blob/0904a5c432364af22b68dc4d6d0769601e68b346/org.eclipse.winery.repository.rest/src/main/java/org/eclipse/winery/repository/rest/resources/entitytypes/properties/PropertiesDefinitionResource.java#L108] method in the PropertiesDefinitionResource.java [https://github.com/OpenTOSCA/winery/blob/ustutt/org.eclipse.winery.repository.rest/src/main/java/org/eclipse/winery/repository/rest/resources/entitytypes/properties/PropertiesDefinitionResource.java] class.
The following code fragment (starting at line 131) in the OnPost() [https://github.com/OpenTOSCA/winery/blob/0904a5c432364af22b68dc4d6d0769601e68b346/org.eclipse.winery.repository.rest/src/main/java/org/eclipse/winery/repository/rest/resources/entitytypes/properties/PropertiesDefinitionResource.java#L108] is responsible for handling requests to create a custom key/value property:

else if (data.selectedValue == PropertiesDefinitionEnum.Custom) {
 TEntityType et = this.parentRes.getEntityType();

 // clear current properties definition
 et.setPropertiesDefinition(null);

 // create winery properties definition and persist it
 ModelUtilities.replaceWinerysPropertiesDefinition(et, data.winerysPropertiesDefinition);
 String namespace = data.winerysPropertiesDefinition.getNamespace();
 NamespaceManager namespaceManager = RepositoryFactory.getRepository().getNamespaceManager();
 if (!namespaceManager.hasPrefix(namespace)) {
 namespaceManager.addNamespace(namespace);
 }
 return RestUtils.persist(this.parentRes);
}

Policy Template Creation

Winery GUI

	other elements -> policy templates -> add new

	fill out the required fields

	choose the newly created policy type (DemoPolicy) as type for the template

	click the ‘Add’ button

GUI screenshot:
[image: ../_images/CreatePolicyTemplateModal.png]

The created policy template has a property with the same key (prop1) as the policy type. This can be observed in the ‘xml’ tab as well as in the ‘properties’ tab.

XML:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Definitions targetNamespace="http://www.example.org/tosca/policytemplates" id="winery-defs-for_policytemplates1-DemoPolicyTemplate" xmlns="http://docs.oasis-open.org/tosca/ns/2011/12" xmlns:selfservice="http://www.eclipse.org/winery/model/selfservice" xmlns:winery="http://www.opentosca.org/winery/extensions/tosca/2013/02/12" xmlns:testwineryopentoscaorg="http://test.winery.opentosca.org">
 <PolicyTemplate name="DemoPolicyTemplate" type="policytypes1:DemoPolicy" id="DemoPolicyTemplate" xmlns:policytypes1="http://www.example.org/tosca/policytypes">
 <Properties>
 <properties xmlns="http://www.example.org/tosca/policytypes/propertiesdefinition/winery">
 <prop1/>
 </properties>
 </Properties>
 </PolicyTemplate>
</Definitions>

Properties tab:
[image: ../_images/CustomKeyValuePropertyTemplate.png]

Assigning a value

Winery GUI

Enter the value that should be assigned to the property in the input filed and click on save.

Screenshot:
[image: ../_images/CustomKeyValuePropertyTemplateValue.png]

XML:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Definitions targetNamespace="http://www.example.org/tosca/policytemplates" id="winery-defs-for_policytemplates1-DemoPolicyTemplate" xmlns="http://docs.oasis-open.org/tosca/ns/2011/12" xmlns:selfservice="http://www.eclipse.org/winery/model/selfservice" xmlns:winery="http://www.opentosca.org/winery/extensions/tosca/2013/02/12" xmlns:testwineryopentoscaorg="http://test.winery.opentosca.org">
 <PolicyTemplate name="DemoPolicyTemplate" type="policytypes1:DemoPolicy" id="DemoPolicyTemplate" xmlns:policytypes1="http://www.example.org/tosca/policytypes">
 <Properties>
 <properties xmlns="http://www.example.org/tosca/policytypes/propertiesdefinition/winery">
 <prop1>val1</prop1>
 </properties>
 </Properties>
 </PolicyTemplate>
</Definitions>

Winery Backend

The request to add a value to a template property gets handled by the setProperties() [https://github.com/OpenTOSCA/winery/blob/0904a5c432364af22b68dc4d6d0769601e68b346/org.eclipse.winery.repository.rest/src/main/java/org/eclipse/winery/repository/rest/resources/entitytemplates/PropertiesResource.java#L59] method in the PropertiesResource.java [https://github.com/OpenTOSCA/winery/blob/0904a5c432364af22b68dc4d6d0769601e68b346/org.eclipse.winery.repository.rest/src/main/java/org/eclipse/winery/repository/rest/resources/entitytemplates/PropertiesResource.java#L59] class.

public Response setProperties(Map<String, String> properties) {
 this.template.getProperties().setKVProperties(properties);
 return RestUtils.persist(this.res);
}

 Recommended Readings

Recommended Readings

	Simon Harrer et al. Java by Comparison [http://java.by-comparison.com/]. The Pragmatic Programmers, 2018.

	Joshua Bloch. Effective Java, 3rd edition [https://www.safaribooksonline.com/library/view/effective-java-third/9780134686097/]. Addison-Wesley Professional, 2017.

 Eclipse Winery’s Layout of Filebased Repository

Eclipse Winery’s Layout of Filebased Repository

	Typical layout

	Directory imports

	Directory layout

	Handling of the extensibility parts

	Special treatment of XSD definitions

	Knowing the definitions for a QName

Related architectural decision records are
ADR-0001
ADR-0002.

The general structure is ROOT/<componenttype>s/<encoded-namespace>/<encoded-id>/<resource-specific-part>.
Encoding is explained below.

The figure below shows the root directory of the filesystem and the directory layout for the NodeType NT1.

[image: ../_images/FilesystemDirectoryLayout.png]

Encoding

Encoding of directory and file names is done following RFC 3986 [https://tools.ietf.org/html/rfc3986#section-2.1].
This makes the structure consistent to the URL structure (cf. REST API).

The URL encoding is necessary as some letter allowed in namespaces (e.g. ., :, ;, /) and IDs are not allowed on all operating systems.
IDs are NCNames [https://www.w3.org/TR/xmlschema-2/#NCName], which are based on XML 1.0 Names [https://www.w3.org/TR/2000/WD-xml-2e-20000814#NT-Name], which in turn allows nearly all unicode characters [https://www.w3.org/TR/2000/WD-xml-2e-20000814#NT-Letter].
Therefore, each namespace and ID is URL encoded when written to the filesystem and URL decoded when read from the filesystem.

More information on encoding is given at Encoding.

Typical layout

Typically, all definitions children have the path componenttype/ns/id.

The component type is nodetypes, relationshiptypes, servicetemplates, …

ns is the namespace.
It is stored encoded (see above).
id is the XML id of the component.
It is stored encoded (see above).

For instance, the NodeType NT1 in the namespace http://www.example.com/NodeTypes is found in the directory nodetypes/http%3A%2F%2Fexample.com%2FNodeTypes/NT1.
The content of the Definitions is stored in NodeType.tosca.

The resource-specific part typically is a file named <componenttype>.tosca.
It contains the Definitions XML file where all the data is stored.
Files may be added to artifact templates.
Therefore, a subdirectory “files” is created in ROOT/artifacttemplates/<encoded-namespace>/<encoded-id>.
There, the files are stored.

Directory imports

This directory stores files belonging to a CSAR.
That means, when a definitions points to an external reference, the file has to be stored at the external location and not inside the repository.

Directory layout of the imports directory

imports/<encoded importtype>/<encoded namespace>/<id>/

In case no namespace is specified, then __NONE__ is used as namespace.
Handling of that is currently not supported.

id is a randomly generated id reflecting a single imported file.

Inside the directory, a .tosca is stored containing the import element only.
In the future, this can be used to contain the extensibility attributes, which are currently unsupported.

location points to
i) the local file or
ii) to some external definition (absolute URL!)

Currently, (ii) is not implemented and the storage is used as mirror only to be able to
a) offer choice of known XML Schema definitions
b) generate a UI for known XML Schemas (current idea: use http://sourceforge.net/projects/xsd2gui/)

Typically, all definitions children have the path type/ns/id.
We add imports before to group the imports.
The chosen order allows to present all available imports for a given import type
by just querying the contents of <encoded importtype>.

Handling of the extensibility parts

Handling of the extensible part of tImport is not supported.
A first idea is to store the Import XML Element as file in the respective directory.

Special treatment of XSD definitions

Knowing the definitions for a QName

Currently, all contained XSDs are queried for their defined local names and this set is aggregated.

The following is an implementation idea:

Each namespace may contain multiple definitions.
Therefore, each folder <enocoded namespace> contains a file import.properties,
which provides a mapping of local names to id.
For instance, if theElementis defined in myxmldefs.xsd (being the human-readable id of the folder),
index.properties contains theElement = myxmldefs.xsd.
The local name is sufficient as the namespace is given by the parent directory.

 REST API

REST API

All resources are implemented in classes in the package org.eclipse.winery.repository.rest.resources.
We call all elements directly nested in the definitions element “components”.
They are implemented using JAX RS using Jersey [https://eclipse-ee4j.github.io/jersey/].

The full set the API is used by the Management user interface and the Topology Modeler.

URL Structure

The idea behind the URL structure may shortly describes by ROOT/<componenttype>s/<double-encoded-namespace>/<double-encoded-id>/<resource-specific-part>, which makes the structure similar to one of the file system.
Encoding is done following RFC 3986 [https://tools.ietf.org/html/rfc3986#section-2.1].
An online URL-encoder may be found at: http://www.albinoresearch.com/misc/urlencode.php.

For instance, the NodeType “NT1” in the namespace http://www.example.com/NodeTypes is found at the URL nodetypes/http%253A%252F%252Fexample.com%252FNodeTypes/NT1/.
As the browser decodes the URL, the namespace and the id are double encoded.
Note the additional encoding of the symbol % in comparison to the encoding at the filesystem.
This is due to security decisions to disallow %2F in URLs.

The part until <componenttype>s is realized by “AbstractComponentsResource” and its subclasses.
The resource specific part is realized by subclasses of AbstractComponentInstanceResource.

More information on encoding is given at Encoding.

Collections of Components

[image: ../_images/InheritanceAbstractComponentResource.png]

The figure above shows the inheritance of AbstractComponentsResource.
It contains an intermediate class AbstractComponentsWithTypeReferenceResource which handles a POST with an additional type.
It is used at all components which have a type associated.
These are artifact templates, node type implementations, relationship type implementations and policy templates.

All logic is implemented in AbstractComponentsResource.
It handles creation of resources (using POST) and creation of AbstractComponentInstanceResources.

Component Instances

[image: ../_images/InheritanceAbstractComponentInstanceResource.png]

The figure above shows the inheritance of AbstractComponentInstanceResource.
For each component, a class exists.
Using Intermediate classes, common properties are handled.
These are explained in the following sections.

AbstractComponentInstanceResourceWithNameDerivedFromAbstractFinal

Several component instances have the attributes name, dervidedFrom, abstract, and final.
These are handled in the class AbstractComponentInstanceResourceWithNameDerivedFromAbstractFinal.
In this group, type implementations, namely node type implementations and relationship type implementations can be found.

Furthermore, type resources exist.
These are grouped by the EntityTypeResource.
Within the context of this class, TopologyGraphElementEntityTypeResource is introduced.
This class groups together NodeTypeResource and RelationshipTypeResource.

AbstractComponentInstanceWithReferencesResource

This class groups together classes with file references.
Artifact Templates may reference files and a Service Template may reference plans.
The user can copy files manually to the right place in the directory structure of the repository.
By calling the method synchronizeReferences(), the referenced stores in the XML are synchronized with the actually existing files. This is done whenever the XML is retrieved from the repository.

GenericImportResource

This class is used to handle different import types.
Currently, only CSD is supported.
The class is XSDImportResource.

PolicyTemplateResource

This class implements the resource for a policy template.
Since a policy template does not contain any external file references, it is not modeled as child of AbstractComponentInstanceWithReferencesResource.

 Source Code Headers

Source Code Headers

This file explains how to create and maintain copyright headers in source files.

Initial header

/**
 * Copyright (c) ${YEAR} Contributors to the Eclipse Foundation
 *
 * See the NOTICE file(s) distributed with this work for additional
 * information regarding copyright ownership.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
 * which is available at https://www.apache.org/licenses/LICENSE-2.0.
 *
 * SPDX-License-Identifier: EPL-2.0 OR Apache-2.0
 **/

See also https://www.eclipse.org/projects/handbook/#ip-copyright-headers.

IntelliJ IDEA Configuration

Copyright (c) $today.year Contributors to the Eclipse Foundation

See the NOTICE file(s) distributed with this work for additional
information regarding copyright ownership.

This program and the accompanying materials are made available under the
terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
which is available at https://www.apache.org/licenses/LICENSE-2.0.

SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

Regex

Just Copyright is enough to match existing headers.

Full information

Full information is available at: http://www.eclipse.org/legal/copyrightandlicensenotice.php

 Eclipse Winery Toolchain

Eclipse Winery Toolchain

To contribute to Eclipse Winery development you need a GitHub account and access to https://github.com/opentosca/winery.
Email your supervisor your GitHub username.

	In case you did not choose an account name, use flastname as pattern:
f is the lower-case first letter of your first name and
lastname is the lower-case last name.

	Due to open source development, your email address will get public.
In case, you don’t have a public email address, we recommend creating one or use your student email address.
In case you want to create a longer-lasting one, please use the GitHub username.
Example: flastname@gmail.com.

	Please enable the git-hooks by executing git config core.hooksPath .git-hooks in the root of the repository.

Install Apache Maven

Get Apache Maven [https://maven.apache.org/] to run.

Get write access to the code repositories

	Email your supervisor your GitHub username and your development email address.

	Your supervisor adds you to the team “developers” at https://github.com/opentosca and https://github.com/winery.

	You will receive two emails from GitHub asking for your confirmation.

	Open the link https://github.com/orgs/winery/invitation.

	Open the link https://github.com/orgs/OpenTOSCA/invitation.

Steps to initialize the code repository

	Clone https://github.com/opentosca/winery (it automatically becomes the origin).

	We recommend that git repositories reside in c:\git-repositories.

	Use ConEmu [https://conemu.github.io] as a program for all your shells: choco install conemu.
Install chocolatey [https://chocolatey.org/] to use the choco command.

	Execute git clone https://github.com/OpenTOSCA/winery.git in c:\git-repositories.

	Change into the newly created directory winery: cd winery.

	Add upstream as second remote: git remote add upstream https://github.com/eclipse/winery.git

	Fetch everything from upstream: git fetch upstream or git fetch --all

	Run mvn clean install -DskipTests to build the whole project

Steps to initialize a TOSCA repository

Winery has built-in magic to check for existence of c:/winery-repository on Windows.
If that directory exists, this is used as repository location.
If that directory does not exists, it uses the home directory, which is %HOME% defaulting to c:/Users/<USERNAME>/winery-repository
(or ~/winery-repository on Linux-based operating systems).

However, you can start Winery based on an existing repository.

XML Repo: https://github.com/OpenTOSCA/tosca-definitions-internal
YAML Repo: https://github.com/radon-h2020/radon-particles

	Clone one the repositories from above

	Start the Winery backend to initialize the configuration files

	Go to C:\Users\<your user>\.winery on your computer and open the file winery.yml

	Adjust the value of the provider and repositoryRoot attribute:

provider: file
repositoryRoot: c:\git-repositories\tosca-definitions-internal

or

provider: yaml
repositoryRoot: c:\git-repositories\radon-particles

	Restart your Winery backend

Steps to initialize the IDE

Setup IntelliJ IDEA as described at config/IntelliJ IDEA.
Alternatively, you can you Eclipse as described at config/Eclipse.
However, the latter is currently work-in-progress.

 Notes on TOSCA 1.0

Notes on TOSCA 1.0

“name” vs. “id”

Some entities carry a name, some an id and some both.
A justification is available at TOSCA issue 47 [https://issues.oasis-open.org/browse/TOSCA-47].

Possible attachments of artifacts

Implementation Artifacts (IAs) may be attached at:

	NodeType/Interfaces/Interface/Operation (via IA’s operation attribute)

	NodeType/Interfaces/Interface/Operation

	NodeTemplate

Deployment Artifacts (DAs) may be attached at:

	NodeType

	NodeTemplate

 Topology Compliance Checking

Topology Compliance Checking

The Topology Compliance Checking of Winery enables to describe restrictions, constraints, and requirements for Topology Templates in form of reusable topology-based Compliance Rules.
Furthermore, the Compliance Checker of Winery can be used to ensure that a given Topology Template is compliant to the current set of Compliance Rules.

Structure of a Compliance Rule

A Compliance Rule itself consists of two Topology Templates called
Identifier and Required Structure.
The Identifier is used to detect areas in a Topology Template that are subject to the rule while the
Required Structure is used to verify if the rule is satisfied. It is important to note that a Compliance Rule is only valid if there is exactly one matching mapping from the Identifier to the Required Structure.
A Topology Element 𝑒1 can be matched to a Topology Element 𝑒2 if the type of 𝑒2 is of the same type or supertype of the type of 𝑒1. Furthermore, all attributes of 𝑒1 must also be present in 𝑒2 with equivalent 𝐾𝑒𝑦 and 𝑉𝑎𝑙𝑢𝑒.

An example of a valid Compliance Rule is shown here:

[image: ../../_images/ComplianceRule.png]

The Identifier consists of a single Node Template with a property “DataType: PersonalData”. As the Required Structure contains a Node Template of the same type and with a property with equivalent key and value it exists a matching mapping.
Hence, the compliance rule is valid.

Concept of Compliance Checking

The detection of relevant compliance areas in Topology Models is based on the detection of subgraph isomorphisms which also takes the types and attributes of Topology Elements forming the Topology Model into account.
An example of a Compliance Rule that is detected and satisfied for a Topology Template is shown here:

[image: ../../_images/ComplianceRuleDetection.png]

Detected means: A Compliance Rule is detected if there is at least on matching mapping from the Identifier to the Topology Model.

Satisfied means: A Compliance Rule is satisfied if each area that has been found by the detector also satisfies the Required Structure. Otherwise a rule is unsatisfied.

Tutorial

In the following, a simple example is given describing how to use Topology Compliance Checking.
We will describe how to create your first topology-based Compliance Rule and how to check the compliance of Topology Templates based on existing Compliance Rules.

Note: You should have a look at the Winery User Guide [http://eclipse.github.io/winery] before reading this tutorial to get all the basic knowledge about Winery.

Step 1: Start Winery

If you need help getting Winery up and running have a look at the Quickstart Guide [http://eclipse.github.io/winery]

Step 2: Create a compliance rule

First, we need to create a Compliance Rule.
Select the tab “Other Elements” => “Compliance Rules” to get an overview of the existing Compliance Rules in the repository.
Click on “Add new” to create a new Compliance Rule. A modal to add a new Compliance Rule appears:

[image: ../../_images/CreateComplianceRule.png]

	Enter a name for your rule e.g., “PersonalDataComplianceRule”

	Choose a namespace for the Compliance Rule.

	Click “Add”

Note: The namespace is used to identify all Topology Templates that are subject to the rule.
This means each Compliance Rule defined for a certain namespace automatically applies to all Topology Templates defined in that namespace.

Step.2.1: Model Identifier and Required Structure

After the previous steps a Compliance Rule with empty Identifier and Required Structure is created.
Subsequent, the Topology Modeler of Winery can be used to model the Identifier and Required Structure of the Compliance Rule:
[image: ../../_images/CreateComplianceRule.png]

	Choose Tab “Identifier” or “Required Structure”

	Click “Open Editor”

	Model “Identifier” or “Required Structure”

An exemplary Compliance Rule that is concerned with the storage of personal user data may look like this:

	Identifier
	Required Structure

	[image:]
	[image:]

The motivation for this Compliance Rule is to ensure that all MySQL databases that store personal data are hosted on a specific OpenStack Component with the HypervisorEndpoint: “192.168.4.3”.

Step 3: Check Compliance of a Topology Template

After creating our first Compliance Rule we can check if a Topology Template with the same namespace satisfies this rule.
Therefor, we can either use an existing Service Template or create a new Service Template.
Note that it is important to ensure that the Compliance Rule is detected in your Topology Template.
Compliance Rules that are not detected in a Topology Template are satisfied.

	Click on the “Service Templates” tab

	Select a Service Template whose Topology Template needs to be checked for compliance

	Click on the “Constraint Checking” tab

	Click on the button “Check Constraints”

	The results will be shown as XML

An example of a Topology Template that does not satisfy the Compliance Rule defined in Step 2.1 is shown below:

	Topology Template
	Result

	[image:]
	[image:]

The left side shows the modeled Topology Template.
The specified property HypervisorEndpoint: “192.168.0.0” of the OpenStack component violates the constraints specified by the Compliance Rule.
The violation is detected by the Compliance Checker and returned in the result.

After updating the property HypervisorEndpoint to “192.168.4.3” the Topology Template does satisfy the compliance rule defined in Step 2.1 as shown below:

	Topology Template
	Result

	[image:]
	[image:]

 Generate an Implementation Artifact for a Node Type Interface

Generate an Implementation Artifact for a Node Type Interface

To specify what a node type should do, the user can define an interface and the operations provided by this interface.
Once the operations of a node type are defined, artifacts (e.g., shell scripts, .war files) implementing these operations need to be modeled.
For this, Winery provides an option to automatically generate a stub java maven project to build a .war file for a defined interface.
This can be done in the Interface tab of the node type view by pressing Generate Implementation Artifact.
A node type implementation will be automatically generated as well, if it does not exist yet.
Once you get a confirmation that the artifact was generated, please press Save.

[image: ../../_images/GenerateImplArtifact.jpg]

To download the generated stub java main project, go to the detailed view of the artifact template and press ZIP.

[image: ../../_images/DownloadGeneratedStub.jpg]

Unzip the archive generated by Winery into a location of your choice. In the root folder, you can find a README.txt explaining in details how to edit, build and upload the .war file to the implementation artifact in Winery.
A summary of this is provided below.
For the next steps, maven and Eclipse are required. Furthermore, maven commands are executed in the root folder of the implementation artifact.

Create an Eclipse Project

	Run: mvn eclipse:eclipse

	Open Eclipse

	File -> Import -> Existing Project into Workspace -> click Next

	Click Browse and select folder where you unzipped the generated implementation artifact

	Select the project from the list and click Finish

Test your Implementation Artifact

	Run: mvn clean package tomcat7:run-war

	Open this page to see the list of available services: http://localhost:9090/services/

	This page also links the WSDL

	With the WSDL your’re able to test your IA using SOAPui or other tools.

Upload your Implementation Artifact

You have two options to do this:

1) Automatically (to the Winery instance this IA project was generated with)

	Run: mvn deploy

	The WAR is directly uploaded into the correct ArtifactTemplate, previous versions will be overwritten.

2) Manually

	Run: mvn clean package

	Locate the WAR file in the /target folder

	Open Winery in your browser, locate the artifact template representing this implementation artifact.

	Upload the WAR file to the artifact template in the tab Files

 Grouping

Grouping

The Grouping feature of Winery enables to describe groups of node templates within a topology template.
This enables the possibility to express that a set of node templates belong to each other given a certain semantic, for example, to describe that, within a topology template, a group of node templates is deployed on AWS, while another group of node templates is deployed on OpenStack.
The grouping feature can be used to create or view groups of arbitrary semantics within a topology template.

Tutorial

In the following, a simple example is given describing how to use the Grouping feature of Winery.
We will describe how to create multiple groups, how to get an overview of existing groups, and how to remove node templates from groups, or even remove an entire group including its members.

Note: You should have a look at the Winery User Guide [http://eclipse.github.io/winery] before reading this tutorial to get all the basic knowledge about Winery.

Step 1: Start Winery

If you need help getting Winery up and running have a look at the Quickstart Guide [http://eclipse.github.io/winery]

Step 2: Open/Create a Topology Template

First, we need to open a Topology Template in the TOSCA topology model editor.
If no service template exists, create one according to this tutorial
Once a service template exists, select the tab “Service Templates” in Winery, then open an arbitrary service template by clicking on it.
Next, click on the “Topology Template” tab within the opened service template, and select “Open Editor” to start the TOSCA topology model editor for this topology template.

Step 3: Create a Group

To create a group, just mark one or more node templates in the TOSCA topology model editor as shown below.

[image: ../../_images/group.gif]

Once the mouse is released, a menu pops up on the right showing the marked node templates.
Based on the selection, it is possible to create a new group.
To do this, a group type needs to be selected that defines the semantics of the group to be created.
Currently, two group types are supported, i.e., (i) location, and (ii) participant.
A location group is used to define a group of node templates that is to be deployed to a location, for example to the AWS Cloud.
A participant group defines a group of node templates that belong to one participant in a multi-participant scenario.
Further, it is possible to define custom group types.

[image: ../../_images/group_type.png]

For example, in the shown figure, the group type participant is selected.
With the button Add to Participant, the user is able to define a name for the group, for example PartnerA, and an endpoint for the invocation of the deployment of the selected node templates as shown below.

[image: ../../_images/group_creation.png]

Once a group exists, it is also possible to add a selection of node templates to an existing group as shown below.

[image: ../../_images/group_selection.png]

Step 4: View and Delete Groups

Once a group was created, it is possible to view the currently existing groups as shown below by clicking on Group View in the menu panel.
When hovering over a group, the node templates of that group are highlighted.

[image: ../../_images/group_view.gif]

Furthermore, it is possible to remove a node template from a group, or to remove a group of node templates, or to remove all groups of a group type entirely by clicking on the X of the respective entity.

 Threat Modeling for Security-aware NFV

Threat Modeling for Security-aware NFV

Threat modeling enables a user to annotate threats in a topology using a structured approach and receive recommendations which security-related Virtual Network Function (S-VNF) should be used.

This documents specifies how this functionality is intended to be used.

Why threat modeling?

In order to protect something of value, threats that impose risk on a application need to be modeled and assessed.
Network Function Virtualization (NFV) can be used as a component based approach to mitigate a certain class of threats.
For Example a virtual firewall could mitigate the threat of publicly exposed ports of a database.

This way it is possible to create a relation between a threat and a potentially mitigating NFV implementation.
To realize this, this module relies on the presents of two special PolicyTypes and a special NodeType.
The setup of these types is automatically triggered if a new threat is created using the designated UI.
It is assumed that each VNF implementations is encapsulated in it’s own ServiceTemplate.

Creating Threats

A threat is a PolicyTemplate of a special PolicyType (”{http://opentosca.org/threatmodeling}Security.Threat-w1_wip1”) and can therefore be created like a regular PolicyTemplate.
The topology modeler UI and repository UI can both be used to create threats.
However it is recommended to create threats using the designed UI in the topology modler UI.
This way it is ensured that threats are created using the required parameters and the corresponding mitigation is created automatically and set up properly.
STRIDE [https://docs.microsoft.com/de-de/azure/security/azure-security-threat-modeling-tool-threats] is used as a threat modeling methodology.
Each threat requires a name, a textual description, stride classification and a severity rating in the form of “Low”, “Middle” and “High”.

[image: ../../_images/ThreatCreation.png]

Assigning threats to NodeTemplates

The created threat PolicyTemplate is intended to be used on a NodeTemplate of a topology to indicate that this NodeTemplate is the target of the threat.
This is done in the topology modeler UI.
The Threat Modeling Modal can be used to generate an overview of all available threats under the menu “Threat Catalog” and receive info on description, stride and severity.
Subsequently the desired threat PolicyTemplate has to be assigned like any other PolicyTemplate using the regular UI.

[image: ../../_images/ThreatCatalog.png]

Assigning Mitigations to VNFs

When threats are created using the threat modeling UI (topology modeler) a corresponding mitigation PolicyTemplate is created.
A naming convention of prepending the given threat name with the string “MITIGATE_” is established to ease working with threat and mitigations.
Referencing the corresponding threat is done by using the “ThreatReference” property of the PolicyTemplate.
Here a string representation of the QName of the threat needs to be specified.
Again, this is done automatically when using the UI.

A mitigation PolicyTemplate is intended to be used in the boundary definitions of a ServiceTemplate to indicate that the topology of the ServiceTemplate can be used to mitigate a given threat.
Multiple mitigations can be assigned to the same ServiceTemplate.

Specifying substitutable NodeTypes for ServiceTemplates

In order to use the topology of a ServiceTemplate in the application topology where threats are present, a substitutable NodeType needs to be specified.
The implemented functionality makes no assumptions how these NodeTypes are modeled besides being abstract and derive from the SVNF NodeType ({http://opentosca.org/nfv/security}S-VNF-w1_wip1).
It is intended to model NodeTypes that inherit from S-VNF (referred to as S-VNF Groups) in a way that multiple VNF implementations can substitute the same S-VFN Group.
All this is done in order to enable users to use abstract NodeTypes in their topologies to hide the underlying complexity and later substitute. Therefore the general rules of substitution apply.

Threat Assessment and Mitigation Recommendation

The “Threat Assessment” menu can be viewed in the repository UI on each ServiceTemplate.
An overview of present threats, their targets, and potential mitigation strategies using available VNFs are presented.
This way a detailed look on the current state of the threats is enabled.
Each recommendation can be directly added to the topology by clicking the corresponding button in the “Available Mitigations” part of the threat modeling modal.

[image: ../../_images/ThreatAssessment.png]

 Pattern-based Deployment and Configuration Models (PbDCMs)

Pattern-based Deployment and Configuration Models (PbDCMs)

This is a guide to the Pattern-bsed Deployment and Configuration Model (PbDCM) approach that is presented in the UCC 2019 paper Pattern-based Deployment Models Revisited: Automated Pattern-driven Deployment Configuration.

IMPORTANT NOTE: To use this feature, you must have the Pattern Refinement feature enabled which is available in the Configuration tab underneath the Administration.

Modeling of PbDCMs

As described in the paper, a PbDCM can be modeled in TOSCA in a Topology Template of a Service Template.
However, instead of containing concrete only Components, a PbDCM contains also Component Patterns and Behavor Pattern.
A Component Pattern is hereby represented as a Node Template that is defined in a Namespace that has been tagged as a “Pattern Namespace”.

Videos on how to model and refine a PbDCM are available on YouTube [https://www.youtube.com/playlist?list=PLLP47UpoeRSDfr9s0ZYV20mgClcfvh15q].

An example PbDCM is shown here: [image: ../../_images/Pbdcm.jpg]

Pattern Types

To create a Pattern Type in TOSCA, Namespaces that are tagged to contain only patterns are used.
Therefore, so-called “Pattern Namespaces” are identified by the patternCollection property set to true.

A Namespace can be transformed to a “Pattern Namespace” in the Administration area of Winery.
Underneath the Namesapces tab, all settings for Namespaces can be edited.
Hence, to create a “Pattern Namespace”, or to identify an existing Namespace as a “Pattern Namespace”, set the Is a pattern collection flag of the corresponding Namespace.

Component Pattern Types

To create a Component Pattern Type, create a Node Type inside a “Pattern Namespace”.

Behavior Pattern Types

To create a Behavior Pattern Type, create a Policy Type inside a “Pattern Namespace”.

Definition and Handling of Component and Behavior Pattern Refinement Models (CBPRMs)

To enable the automated refinement of PbDCMs, CBPRMs defining at least a Detector and Refinement Structure must be crated.
While the Detector must be mappable to a subgraph of a PbDCM according to the Compatibility Rule, the Refinement Structure can contain any kind of Topology Template.

To create, edit, and manage a CBPRM, you need to go to localhost:4200/#/patternrefinementmodels or use Other Elements and click on Pattern Refinement Models.

Refinement of PbDCMs to Executable Deployment Models

After a PbDCM has been created it can be refined in the Topology Modeler by clicking the Refine Patterns button and then Start Refinement:
[image: ../../_images/PbdcmRefinement.jpg]

 Pattern Detection in Declarative Deployment Models

Pattern Detection in Declarative Deployment Models

IMPORTANT NOTE: To use this feature, you must have the Pattern Detection feature enabled which is available in the Configuration tab underneath the Administration.

By using the PRMs/CBPRMs introduced for pattern refinement, patterns can be detected in topologies (see Pattern Deployment Modeling for further reference).
During pattern refinement, the subgraph of a topology is matched using the Detector of a PRM and then replaced by its Refinement Structure.
During pattern detection, the subgraph of a topology is matched using the Refinement Structure of a PRM and then replaced by its Detector.
The following picture shows the pattern detection process for a topology:

[image: ../../_images/pattern-detection-model.png]

The pattern detection process can be triggered in the topology modeler by clicking the Detect Patterns button.
If the button is clicked, a sidebar opens up listing all matching PRMs.
A PRM can be selected for application or its Detector can be viewed by the respective buttons.
NOTE: only PRMs with isPdrm="yes" are considered during pattern detection.

Behavior Pattern Mappings

To improve the detection of patterns, Behavior Pattern Mappings can be added to PRMs as shown in the following picture:

[image: ../../_images/behavior-pattern-mappings.png]

A Behavior Pattern defines the relationship between a Behavior Pattern (modeled as Policy), and a Property required to implement it.
If a Behavior Pattern requires multiple Properties to be implemented, multiple Behavior Pattern Mappings need to be defined.
PRMs which provide Behavior Pattern Mappings can be used during pattern detection even if they do not match completely.
If not all Properties required by a Behavior Pattern are set as defined by the Behavior Pattern Mappings, the Behavior Pattern is removed during replacement of the subgraph.

 Splitting and Matching

Splitting and Matching

Splitting Functionality

In the topologymodeler target labels can be shown/hidden by “Target Locations” - The Target Location assigned to a Node Template determines the service templates serving as cloud provider repositories, which should be searched for a suitable host.
The namespace of all cloud provider repositories must start with “http://www.opentosca.org/providers”.
To distinguish between different repositories the namespace must end with the target label, e.g., “../IAAS” or “../Amazon/PaaS”. The target labels are not case-sensitive.

A prerequisite for a splitting is the assignment of requirements and capabilities to all Node Templates in the Topology Template, which should be split, and the Node Templates in the repositories.
The latter just have requirements assigned because they form the lowest level of the topology.
The naming convention for the mapping of Reqs and Caps are:

	Requirement: ReqCanHostxyz

	Capability: CapCanHostxyz

By clicking the “Split” button first the topology is split according to the assigned labels (nodes with hostedOn-predecessors with different labels are duplicated) and second the host nodes from the provider repositories are matched.
For this, lower level nodes can be removed and replaced.

The split as well as the matched topology are persistently stored with an attached “-split” and “-matched” in the Service Template Id.

[image: ../../_images/Splitting.png]

Matching Functionality

Additional and based on the split function a match function is added to the winery.
A topology is inspected if open requirements are contained. A open requirement is a requirement for which no relationship
to a node template exists which has the matching capability assigned.
In case open requirements are found, the provider repositories are searched for suitable matching candidates.
A matching candidate can be a single node, but also a whole topology fragment.
The matching can be done to new hosts, but also to dat resources, etc.
That means, based on the matching capabilities matching candidates are found and based on the requirements and capabilities
and their inheritance hierarchies the correct relationship types are determined.

To use this functionality a strict type and inheritance system is important.
These are the rules:

	Each capability type with the semantic, that it acts as host/container has to be derived from the capability “Container”

	Each capability type with the semantic, that it acts as a endpoint has to be derived from the capability “Endpoint”

	The two default relationship types “hostedOn” and “connectsTo” should ne available and requires as valid target the capability “Container” oder “Endpoint”

By using this function a vertical as well as horizontal matching is possible.

 Target Allocation

Target Allocation

(see Splitting)

In the repository UI the topology of a Service Template can be allocated to Cloud Providers by clicking the cloud icon and entering the needed information.
Cloud Providers for the Node Templates of the topology are selected based on already assigned target locations and three different criteria.
Each criteria provides the functionality to only assign target locations or also inject Node Templates of these locations based on the Split & Match method.
The resulting topologies are saved in the repository under the same namespace and name as the original topology but with the added suffix “-assigned” or “-allocated” and the number of the generated topology.
The target locations are not case sensitive.

Like the Split & Match method, this functionality assumes that topologies are modeled in a specific way:

	Node Templates have requirements

	at least one Node Template in the topology has a target location

	the target locations correspond to a cloud provider namespace containing Service Templates by the cloud provider with matching capabilites

	only the Node Templates without incoming hostedOn Relationship Templates have target locations assigned

Note: the Split & Match method also supports topology completion and injection of topology fragments with multiple Node Templates.
This is not considered here.

Criteria

Minimal amount of host components

Distribute the existing target labels so that PaaS Node Templates are preferred and the resulting topology has a minimal amount of Node Templates.

Fulfillment of policies

Select target locations based on non functional requirements modeled as Policy Templates.

Additional requirements:

	Node Templates without incoming hostedOn Relationship Templates have Policies

	names of policies are unique in the topology (name has to be used as ID as Policies have no IDs)

The selection is performed by comparing the Policies of the topology with the Policies of the fragments of the cloud providers.
For the comparison the Policies have to have the same type.
The comparison is performed by operators, which can be selected in the GUI modal.
These operators compare one specified property of the Policies.
At the moment, only primitive data types modeled as Winery Key-Value properties are supported for comparison.

Minimal amount of external connectsTo Relationship Templates

Distribute target locations so that amount of external connectsTo Relationship Templates is minimal.
A Relationship Template is considered external if it connects Node Templates of different target locations.
Note: a randomized algorithm is used, so results can vary.

Additional requirements:

	each Node Template without incoming Relationship Templates and without target location is (transitively) connected to at least one Node Template with target location

Combination of criteria & topology generation

Each criteria generates permutations of all possibile target location distributions and matching Node Templates of the Cloud Providers.
As this can result in the generation of many topologies, which can take a long time, an upper bound of topologies to generate can be specified in the GUI modal (”topology generation cap”).

Generated topologies can also be filtered by the different criteria.
For example, topologies generated by the “Minimal amount of host components” can be filtered for minimal external connectsTos.
This enables the fulfillment of multiple criteria and the narrowing of the generated topologies.

As target locations can also only be assigned without injecting matching Node Templates from the Cloud Providers, the preferred target location distribution can also be selected manually.
After the selection, matching Node Templates can be injected using on of the criteria or the Split & Match functionality.

 TOSCA Topology Completion

TOSCA Topology Completion

The TOSCA Topology Completion of Winery enables the user to model incomplete TOSCA Topology Templates and complete them automatically.

In the following we will describe how such incomplete topologies can be modeled and how the Topology Completion can be invoked.

Why Topology Completion?

By using the Topology Completion add-on of Winery you are able to minimize your effort when modeling TOSCA topologies.
In most TOSCA run time environments it is necessary to model a complete topology containing all necessary details to provision an application.
This leads to high costs in the modeling process. Furthermore a lot of know-how is necessary when completing a topology. The modeler has to know about the
components he can insert and their connections. In case this know-how is not granted, the Topology Completion can be very helpful.

The Topology Completion can also be used by inexperienced users who haven’t modeled any TOSCA topologies yet.
The step-by-step function of the completion allows these users to comprehend the completion and to learn how a TOSCA Topology Template is modeled.

Modeling incomplete TOSCA Topology Templates

[image: ../../_images/IncompleteTopologyExample.png]
Figure 1: Example of an incomplete Topology using Requirements

To be able to complete a topology you have to model an incomplete topology first, providing a base for the Topology Completion.
There are several ways to model incomplete topologies that will be described in the following.

Modeling incomplete TOSCA Topology Templates using TOSCA Requirements

TOSCA Requirements make it possible to define restrictions for the topology completion. By adding TOSCA Requirements to Node Templates
you can determine which elements may or may not be added to the topology. E.g. by adding the Requirement “SQLDatabaseRequirement” you can predetermine
that a “SQLDatabase” Node Template will be added to the topology. Note that in this case a Node Type with a suitable CapabilityDefinition (e.g. SQLDatabaseCapability) has to exist in the Winery Repository to fulfill the Requirement.

The example topology in figure 1 displays the usage of Requirements:

[image: ../../_images/TopologyComplete.png]
Figure 2: Possible Completion Result

For each Requirement, the Topology Completion will insert Node Templates containing suitable Capabilities. Note that the inserted Node Templates can be attached with further Requirements that will also be fulfilled by the Topology Completion.

A possible completed topology for the example above is displayed in figure 2.

Modeling incomplete TOSCA Topology Templates using Deferred-Relationship Templates and TOSCA Requirements

In case you want to model part of the infrastructure by yourself (e.g. the Cloud Provider) the usage of Requirements isn’t enough.
We need a means to predefine part of a complete topology that isn’t directly connected to the application components (which contain the TOSCA Requirements).
To achieve this we introduce a new Relationship Template “deferred”, which you will have to create in the Repository as follows:

<source lang="xml">
 <tosca:RelationshipType name="deferred" targetNamespace=""/>
</source>

[image: ../../_images/DeferredExample.png]
Figure 3: Incomplete Topologies using Deferred-Relationship Templates

After creating the Relationship Type in the repository you can use it to connect to your modeled infrastructure components.
Figure 3 displays an example for the usage of “deferred”-Relationship Templates. The modeled Amazon Instance will be considered by the Topology Completion.

Invoking the TOSCA Topology Completion

To invoke the Topology Completion open an incomplete topology in the topology modeler and select “Complete Topology”.
In the appearing dialog fill in the save options for the completed topology and if the Topology Completion shall be processed step-by-step.
In case the step-by-step approach is selected, the topology completion algorithm will pause in every step giving feedback about the Node and Relationship Templates to be inserted.
Figure 4 displays the completion dialog:

[image: ../../_images/CompletionDialog.png]
Figure 4: Completion Dialog

After the form has been completed you can start the completion by selecting “Complete Topology” in the dialog.
After the completion the completed topology will be displayed in the topology modeler or in a new browser window dependent on the selected save options.

 Update Management of Node Templates in Topology Modeler

Update Management of Node Templates in Topology Modeler

This guide shows an overview of how to update a Node Template in a Topology Template.

Steps to update a Node Template

User will be informed with a red exclamation mark when there’s any new versions available for a node template.
[image: ../../_images/NewVersionAvailable.jpeg]

Select the version to update.
[image: ../../_images/VersionSelection.jpeg]

A table with new, removed and resolved Properties will be shown. A new Property and a removed Property can be selected so that the value will be transferred.
[image: ../../_images/PropertiesToMap.png]

Now the Node Template is updated in the Topology Template. New Properties are available and values are transferred.
[image: ../../_images/UpdatedNodeTemplate.jpeg]

To confirm the update above, save the topology template.

 XaaS Packager

XaaS Packager

Motivation

The goal of this feature is to provide an easy way to deploy a new Deployment Artifact (e.g. web application) by reusing an existing Service Template and replacing the Deployment Artifact in the specified Node Type with the new Deployment Artifact.

Enabling a ServiceTemplate to be reused with the XaaS Packager

To enable a Service Template to be reusable by the XaaS Packager you can either:

	Create a new Service Template according to your requirements and specifications or

	Use an already existing Service Template that satisfies your needs.

However, in both cases you have to add the following Tags to the ServiceTemplate so the XaaS Packager can work with them:

	xaasPackageArtifactType indicates the type of the artifact to be wrapped.

	xaasPackageNode indicates the nodeTemplate INSIDE a TAGGED ServiceTemplate to determine the destination where to inject the artifact into.

	xaasPackageDeploymentArtifact indicates a Deployment Artifact declared at the target Node (xaasPackageNode) which will be replaced by the given artefact.

To add the necessary Tags to a ServiceTemplate the following steps have to be completed:

	In the Service Template view (click on Service Templates on the top of the page), choose the Service Template to be enabled to be used by the XaaS Packager.

	Click on the Tags tab then click on the add button above the table to add new Tags to the Service Template.

	In the add dialog that shows the following inputs:

	Name specifying the name of the tag (xaasPackageArtifactType, xaasPackageNode, xaasPackageDeploymentArtifact).

	Value the corresponding value for each tag.

	After entering the desired name and value for a tag, click the add button that generates and saves the tag to the ServiceTemplate.

The steps 2-4 have to be completed for each of the XaaS Packager specific tags specified above.

For example, the input of:

	name: xaasPackageArtifactType, value: {http://docs.oasis-open.org/tosca/ns/2011/12/ToscaBaseTypes}

	name: xaasPackageDeploymentArtifact, value: HelloWorldDA

	name: xaasPackageNode, value: PythonApp_2_7

Generates the following XML:

<tosca:Tags>
 <tosca:Tag name="xaasPackageArtifactType" value="{http://docs.oasis-open.org/tosca/ns/2011/12/ToscaBaseTypes}ScriptArtifact"/>
 <tosca:Tag name="xaasPackageDeploymentArtifact" value="HelloWorldDA"/>
 <tosca:Tag name="xaasPackageNode" value="PythonApp_2_7"/>
</tosca:Tags>

XaaS Packager with Winery

The functionality of the XaaS Packager is available in the Winery application and can be used as follows:

	Click on the tab ServiceTemplates at the top of the page.

	Then click on the button create from artifact from the menu to the right.
A dialog will show up contaning the following inputs:

	Type: the user has to select the appropriate Artifact Type out of the available xaasPackagerArtifactTypes.

	Select Artifact: here the user upload the Deployment Artifact that will replace the existing Artifact in the specified Node Type.

	Tags: additional tags can be added to the resulting Service Template.

	NodeTypes (optional): allows the selection of additional Node Types that MUST be used inside the selected topology.

After setting all required inputs, a click on the add button triggers a search for a suitable cloud topology into which the artifact can be wrapped.

_images/run-step3-add-tomcat.png
Run/Debug Configurations

+ ¥

‘Add New Configuration
ottt omiguenen

Gruntje
¥ Gulpjs

{1 JAR Application

% JsvaScript Debug

5 Jest

& Junit

K Kotlin.

K Kotlin script.

I LaTex

O Lettuce

£ Maven

[npm

@ Nwjs

2 Play2App

@ Protractor

3 Python Remote Debug
& React Native

@ Remote

@ bt Task

 Scala Console
¥ Scals Scrpt

2 ScalaTest

2 Specs2

Spyds

£ Spys for Nodejs

G TestNG

5 et
s
40 items more (irrelevant)...

Click the + button to

» Configurations availa

‘Add New Tomeat Server’ Configurationh with

gurat

_images/run-step4-configure-tomcat-button.png
Run/Debug Configurations X

+ - m¥ MNsme: | Unnamed Clshare

& Tomeat Server
Unnamed
> % Defautts Applcation sever, | Tomeat 5

Sener | Depleyment | Logs | Code Couerage | Sarup/Connection

_images/run-step12-set-winery-as-application-context.png
Name: | Tomcat - REST [share

Server [DEPIGYRERE] Logs | Coe Coverage | Startup/Connection |

Deploy at the sever startup.

+ | Application context: [/winery v

_images/run-step2-add-new-configuration.png
Run/Debug Configurations

E

Add New Configuration (Alt=Einfg) |
> - et

_images/17-AddNewServiceTemplate.jpg
Winery kot

| Service Templates | Node Types Relationship Types Other Elements Administration

= Python_3_ServiceTemplate Version: wi-wip1
http://opentosca.org/servicetemplates(

Export~ | Versions -

LICENSE Topology Template Plans Selfservice Portal Boundary Definitions Tags

\ README |

Constraint Checking Documentation XML

Python_3_ServiceTemplate

I € A service template to install Python3 on a Ubuntu virtual machine running on an Openstack infrastructure.

Properties

« OpenstackUser
« OpenstackPassword

Haftungsausschluss

Dies ist ein Forschungsprototyp und enthatt insbesondere Beitrage von Studenten. Diese Software enthalt moglichenweise Fehler und funktioniert moglicherweise,
insbesondere bei variierten oder neuen Anwendungsfallen, nicht richtig. Insbesondere beim Produktiveinsatz muss 1. die Funktionsfahigkeit geprift und 2. die Einhaltung
samtlicher Lizenzen geprift werden. Die Haftung fr entgangenen Gewinn, Produktionsausfall, Betriebsunterbrechung, entgangene Nutzungen, Verlust von Daten und

Informationen, Finanzierungsaufwendungen sowie sonstige Vermagens- und Folgeschaden ist. aufser in Fallen von grober Fahlassigkeit, Vorsatz und Personenschaden

ausgeschlossen

Disclaimer of Warranty

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. including, without limitation, any warranties or conditions of TITLE, NON-NFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE

_images/18-AddNewServiceTemplate.jpg
Properties | Deployment Artifacts | Requirements & Gapabilities | Policies | Target Locations

winery Layout 38 | Align = | Align

split | Match | Import Topology | Other ~

hitp://opentosca.org/nodetypes

O OperstociLiberty-12

. Python 3-wi-wipt

<23 Ubuntu_14.04-wi-vip]

hitp://opentosca.org/nodetypes/versioned

_images/15-AddNewNodeTypeImplementation-LinkArtifactTemplate.png
Winery

Senvice Templates Node Types Relationship Types | Other Elements: Node Type Implementations | Administration
- Python_3_Impi Version: wi-wip1 D Export~ Versio
http://opentosca.org/nodetypeimplementations(T i Pyihonwiziot
README LICENSE Implementation Artfacts | Deployment Artifacts Inheritance Documentation XML
Available Implementation Artifacts
Search:
Filter all columns ‘
Name Artfact Template Artfact Type Specific Content
Python_3_Impl_IA Python_3_Install_IA_wi-wip1 ScriptArifact

_images/run-step6-set-apache-tomcat-directory.png
B Tomcat Server X

ot [Evpmeomaor |-

Tomat Version: 9.0.7

Tomeat base directory: | C:\Apache\apache-tomcat-9.0.7

@m

_images/16-AddNewServiceTemplate.jpg
Add a new Service Template

Python_3_ServiceTemplate|

Versioning:

Namespace

http://opentosca.org/servicetemplates.

Template:

_images/run-step7-confirm.png
Application Servers

Neme: Tomcat 9.0.7

Tomeat Home: | C\Apache\apache-tomcat-9.0.7
Tomat Version: 9.0.7

Tomeat base directory: | Apache\apache-tomeat-3.0.7

Uibraries

+ otk —

11 Ci\Apachelspache-tomcat-S.0 7 b\p-y
11 Ci\Apachelspache-tomeat-5.0.Nib\senvet-apijan

o] | o

_images/2-AddUbuntuNodeType.jpg
Winery) . about |

Service Templates X NodeTypes | Relationship Types Other Elements. Administration

Ubuntu(# Version: 14.04-wi-wip1 -
http://opentosca org/nodetypes(

README LICENSE Visual Appearance Instance States Interfaces Implementations. Tags

Requirement Definitions. Capability Definitions 1 Properties Definition | Inheritance Documentation XML
Ofnone)
OXML element
OXML type

@Custom key/value pairs

Properties | Wrapper

Search:

Filter all columns ‘

Name. Type
MIP xsdstring
VMinstancelD xsdstring
VMType xsdstring
VMUserName xsdstring
VMUserPassword xsdstring
VMPrivateKey xsdstring
VMPublickey xsdstring
VMKeyPairName xsdstring

_images/2-ModelNodeTemplates.gif
=
=
()
=
<

Open Palette

_images/19-AddNewServiceTemplate.jpg
Python 3-wi-wipl

L e

© AdapterFor
© ConnectsTo
©DependsOn
©HostedOn

1 Ubunty 14.04-wi-wip!
Ubuntu_14.04-wl-wip1
1 (Ubuntu_14.04-wi-wip1)

Hostedon
1 OpenStack-Liberty-12

Openstack-Liberty-12
1 (Openstack-Liberty-12)

_images/2-AddNewNodeType.png
Add a new Node Type

Name

Python

Versioning:
Component version®

3

The component version specifies the components' extemal version defined by the creator
of the software (e.q., Apache Tomcat 8.5.1 has a component version). Winery adds
management to the software which is versioned independently of the softwares' version.
The version inside Winery is called management version and is mandatory. It consists of a
winery version and a work in progress (wip) version. Upon the creation of a new
component, both management versions are set automatically with their initial values of 1
The generated name is displayed in the ‘Final name" field (e.g., the final id for Apache
Tomcat 8.5.1 is)

When developing a TOSCA definition, a the wip version is appended until the TOSCA
definition is stable. To test a TOSCA definition, the wip version can be committed. After a
version was committed, a new version must be added to apply further changes. Thus, a
new wip version must be added (e.g., followed by

released as must be followed by

to enable changes). Thereby, different component versions do not
affect each other (e.g., can be created while
exists)

Final name

Python_3-wl-wipl

Namespace

http://opentosca.org/nodetypes/versioned

Templat

Add

_images/20-AddNewServiceTemplate.jpg
winery - Layout 38 | Align = Align &

split

Open Palette

Match

Properties | Deployment Artifacts | Requirements & Gapabilities

Import Topology

Export CSAR

Python 3-wl-wipl
Python_3-wl-wipl
(Python 3-wi-wip1)

Hostedon

Ubunty 14.04-wi-wip!
Ubuntu_14.04-wl-wip1

(Ubuntu_14.04-wi-wip1)

Hostedon

Openstack Liberty-12

Openstac Libery-12
(Openstack-Liberty-12)

Policies

Target Locations

_images/3-AdaptPropertiesAddArtifacts.gif
winery [B (5551 roveves | sncs | renrements s capaites | poicies || e -

AWS s

N7 (AustamosaFuncion)

Open Palette

AWS s

= (usttstom)

_images/run-step10-choose-artifact.png
ol

el Soud®

_images/run-step11-select-artifcat.png
B select Artifacts to Deploy X

Selected artifacts ill b deployed a severstartup
& org.eclipseinery.epository.restwar

2 org.eclpseinery.topologymodelerviar
2 org.eclpseinery topologymodeleruiar xploded

_images/run-repositoryui-step2-configure.png
+-B e Name: | TOSCA Mangement Ul Cshare (] Allow parsllel run
> it . . .
packagejson: | CA\git-reposeclpse\winery\org cclipse wineryfrontends\ packegejson -
Command: wn <
[MTopologymodeler Scripts: start-tosca-management ~
[Workflowmodeler
lint-workflowmodeler g
lnt-topologymodeler
fint-tosca-management Node nterpreter: | Project node (C:\Program Files\nodesinode o 10150~
> 4 Tomcat Server (st
> FTemplates
Package manager: | Project C:\Program Files\nodejs\node_modulesinpm 6.41
Environment:

~ Before launch: Adtivate tool window

+

There are no tasks to run before launch

(0] Show this page [Actvate tool window

° ol (e

_images/run-step1-edit-configuration.png
o)

_images/3-AddNewNodeType.jpg
about

Senvice Templates | Node Types | Relationship Types Other Elements Administration

http://opentosca.org/nodetypes®

PN e

| README | LIGENSE Visual Appearance Instance States Interfaces Implementations Tags

Requirement Definitions Capability Definitions Properties Definition Inheritance Documentation XML

Python_3 2

I €€ This Node Type installs Python_3.

Properties

None.

Haftungsausschluss

Dies ist ein Forschungsprototyp und enthait insbesondere Beitrége von Studenten. Diese Software enthait moglicherweise Fehler und funktioniert moglicherweise,
insbesondere bei variierten oder neuen Anwendungsfalien, nicht richtig. Insbesondere beim Produktiveinsatz muss 1. die Funktionsfahigkeit gepraft und 2. die Einhaltung
samtiicher Lizenzen gepraft werden. Die Haftung fur entgangenen Gewinn, Produktionsausfall. Betriebsunterbrechung, entgangene Nutzungen, Verlust von Daten und
Informationen, Finanzierungsaufwendungen sowie sonstige Vermagens- und Folgeschaden ist. aufer in Fallen von grober Fahriassigkeit, Vorsatz und Personenschaden
ausgeschiossen

Disclaimer of Warranty

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an *AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT.
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and
‘assume any risks associated with Your exercise of permissions under this License

nav.xhtml

 Table of Contents

 		
 Eclipse Winery

 		
 User Guide

 		
 Getting Started

 		
 Launching with Docker

 		
 Launching with Docker Compose

 		
 Modeling with Winery

 		
 Modeling an Application

 		
 Export CSAR

 		
 Node Type Development

 		
 Modeling based on TOSCA XML (deprecated)

 		
 Creating a new Node Type

 		
 Modeling the Node Type Interface

 		
 Modeling an Artifact Template for a Node Type Operation

 		
 Modeling the Node Type Implementation

 		
 Modeling the Ubuntu Node Type

 		
 Creating the Service Template

 		
 Exporting a Service Template Package

 		
 Miscellaneous Notes

 		
 Uniqueness of QNames

 		
 Component and Feature Overview

 		
 Components

 		
 Features

 		
 Winery CLI

 		
 Frequently Asked Questions (FAQ)

 		
 Q: What is TOSCA?

 		
 Q: What is a CSAR?

 		
 Q: How can I start the OpenTOSCA ecosystem?

 		
 Q: Is there an open repository for TOSCA types?

 		
 Q: Where can I find a quick start guide to model Node Types?

 		
 Q: How can I export my modeled application as a CSAR?

 		
 Q: My modeled Node Type got the suffix name wip what does this mean?

 		
 Q: How can I release a Node Type?

 		
 Q: On Mac OS X, I can neither delete a Node Template nor a Relationship Template.

 		
 Q: Where can I get more help?

 		
 Q: How can I contribute to Winery?

 		
 Developer Guide

 		
 Getting Started

 		
 Notes on TOSCA

 		
 Recommended Readings

 		
 TOSCA 1.3 YAML

 		
 TOSCA 1.0 XML (Deprecated)

 		
 Example TOSCA YAML Files

 		
 Available TOSCA Implementations

 		
 Architectural Decision Log

_images/4-AddUbuntuNodeType.jpg
Generate Implementation Artifact

Java Package

org.opentosca nodetypeimplementations

Node Type Implementation Name

Ubuntu-14.04-wi-wip1-Implementation

Will be created.

Final name

Ubuntu-14.04-wi-wip1-Implementation_-w1-wip1

Namespace

http://opentosca.org/nodetypeimplementations

There is no check for the name of the implementation artifact. The artifact template name will be reused as
implementation artfact name without any futher check

Artifact Template Name

Ubuntu-14.04-wi-wip1-OperatingSysteminterface-IA

Will be created.

Final name

Ubuntu-14.04-w1-wip1-OperatingSysteminterface-IA_-w1-wip1

Namespace

http://opentosca.org/artifacttemplates

_images/4-ModelRelationships.gif
=
=
(0]
=
e

Open Palette

[arace [P

WS s

N> (hustlaiom)

_images/3-AddUbuntuNodeType.jpg
Winery zhout
Service Templates Node Types | Relationship Types Other Elements Administration
Ubuntu® Version: 14.04-w1-wip1
hitp:/fopentosca.org/nodetypes
README LICENSE Visual Appearance Instance States Interfaces | Implementations Tags
Requirement Definitions Capability Definitions Properties Definition Inheritance Documentation XML

Operations

ratingSystemint ~ | installPackage ~
http:/fopentosca org/interfaceshtests transferFile
runScript

Generate Implementation Artfact | | Generate Lifecycle Interface

Input Parameters

Name Type Required
MIP xsd:String YES
VMUserName xsd:String YES
VMPrivateKey xsd:String YES

Output Parameters

Name. Type Required

WaitResult xsd:String YES

_images/4-AddNewNodeType.jpg
Winery . .

Service Templates l NodeTypes | Relationship Types Other Elements Administration
Python@ Version: 3-wi-wip1
hitp://opentosca.orginodetypes@
README LICENSE Visual Appearance Instance States Interfaces Implementations
Requirement Definitions. Capability Definitions | Properties Definition | Inheritance Documentation
'“(none)

' Custom key/value pairs

_images/6-AddNewNodeType-AddInterface.jpg
about

Service Templates 1 NodeTypes | Relationship Types Other Elements Administration
e
hitp:/opentosca.org/nodetypes®

README LICENSE

Visual Appearance Instance States X Interfaces | Implementations Tags
Reguirement Definitions Capability Definitions Properties Definition Inheritance Documentation XML
Interfaces i Operations L
install A

Generate Implementation Artifact | Generate Lifecycle Interface

_images/6-AddUbuntuNodeType.jpg
Service Templates Node Types Relationship Types Administration

| Other Elements: Node Type Implementations _ |

v

Ubuntu-14.04-w1-wip1-Implementation(Version: wi-wip1
http://opentosca.org/nodetypeimplementations(

n
Implementation for Ubuntu_14.04-w1-wip1

README LICENSE Implementation Artifacts | Deployment Artifacts Inheritance Documentation XML

Available Implementation Artifacts

Search:

Filter all columns ‘

Operation Artifact Specific
Name. Interface Name Name Artifact Template. Type Content
Ubuntu-14.04-w1-wip1- OperatingSysteminterface Ubuntu-14.04-w1-wip1-OperatingSystemintedface- ~ WAR
OperatingSysteminterface-JA IAartifactTemplate

_images/5-AddUbuntuNodeType.jpg
Service Templates | Node Types |

Relationship Types Other Elements. Administration

Q Ubuntu(Version: 14.04-w1-wip1

Ve
http/opentosca org/nodetypes(@

README LICENSE Visual Appearance Instance States Interfaces x Implementations | Tags
Requirement Definitions Capability Definitions Properties Definition Inheritance Documentation XML

This page shows Node Type Implementations available for this type. Go to Node Type Implementations to get an oveniew on all Node Type Implementations stored in this
repository.

Search:

Filter all columns

Namespace Name.

http:/fopentosca org/nodetypeimplementations Ubuntu-14.04-w1-wipt-mplementation_w1-wip1

_images/5-ExportCsar.gif
Node Types

Relationship Types

Other Elements.

Administration

Add new

ABMasteronly
radon.blueprints festing

w WX

DeploymentTestAgent
radon.blueprints testing

w WX

ImageResize
radon legacy biueprints

w WX

JMeterMasteronly
radon. blueprints testing

w WX

LocustMasteronly
radon.blueprints festing

w WX

QTMasteronly
radon blueprints testing

w bl X

Import CSAR

Group by Namespace

_images/7-AddNewArtifactTemplate.png
Service Templates Node Types Relationship Types Other Elements Administration

The following items list TOSCA elements contained in TOSCA's Definitions element, which are not listed as separate tabs

Artifacts

Artifact Types Artifact Templates

Requirements and Capabilities

Requirement Types Capability Types
Implementations
Node Type Implementations Relationship Type Implementations
Policies
Policy Types Policy Templates
Imports
XML Schema Definitions WSDLs

Compliance Rules

Compliance Rules

_images/7-AddUbuntuNodeType.jpg
Administration

Senvice Templates Node Types Relationship Types | Other Elements: Arifact Templates

Ubuntu-14.04-w1-wip1-OperatingSysteminterface-|AartifactTemplate(
http://opentosca.org/nodetypeimplementations(@

README LICENSE Files | Source | Properties Property Constraints Documentation XML

Durchsuchen... | Keine Dateien ausgewahit

You may drop the files here

The fles are immediately uploaded vithout ny confirmation

Already included Files:

AddNew Reload from Server Rename Copy allto Files -

> srcimain/iebapp/WES-INF org_opentosca_nodetypes_Ubuntu_14_04-w-wip1_OperatingSysteminterace java
\stc/main/javalorg/opentosca = = -
ey i package rg.cpentosa. edetpeinplanenttions;
= bstractiASenice java 265KB 5 Hsportgavs, erTopesins
A
5 import javax. jus.Oneway;
& import javax.jus.MebMethod;
7 import javax.jws.uebParam;
5 README.md 361KB B [import: jovex Justhenseriices
B 9 import javax.jus. soap. SOAPBinding;
& o H74KE 10 inport javax.xnl.bind.annotation. XalElenent;
1

12 @HebService
13 public class org_opentosca_nodetypes_Ubuntu_14_64-wl-wipl_OperatingSystemInterf

Pt
15 uebtiethod

1 gsoapsinding

17 gonewsy

15 public void installpackage(

19 GiebParan(nane="VMIP", targetlianespace-"http: //nodztypeinplenntations.o
20 GiebParan(nane"VMUseriiane” , targetianespace="http://nodetypeinplenentat
P giebParan(nane-"iprivateKey”, tangetlianespace="http: //nodztypeinplenent
2 GiebParan(nane-"packagelianes", targetlianespace="http: //nodetypeinplenent
2)<

2 /7 This Hashiap holds the return parameters of this operation.

2 Final Hashiiap<String, String> returnParaneters - new HashiapeString, Stri
2

// T0D0: Implement your operation here.

_images/8-AddNewArtifactTemplate.png
Winery

Service Templates Node Types Relationship Types x Other Elements: Artifact Templates \ Administration
‘ Add new J
‘ Import CSAR J
http://opentosca.org/artifacttemplates)
‘ Import YAML J

‘ Show all ltems

...llopentosca.org/artifacttemplates/versioned

Items per Page:‘ 10 :‘ « Previous Next »

_images/AutoCheckGit.png
0 Some checks were not successful Hide all checks

1 failing and 3 successful checks

x ‘codacy/pr — Not 50 good... This pull request quality could be better. Details
v @ continuous-integration/travis-ci/pr — The Travis CI build passed Details
v & continuous-integration/travis-ci/push — The Travis C1 build passed Details

v @ ip-validation Details

° This branch has no conflicts with the base branch
Only those with write access to this repository can merge pull requests.

_images/ChangeBaseForkToOpentoscaWinery.png
O eclipse / winery

¥ View Repository

<> Code Issues 28 Pull requests 5 Boards Reports Projects 0 Wiki Insights

Comparing changes

Choose two branches to see what's changed or to start a new pul request. If you need to, you can also compare across forks.

11 base fork eclipse/winery ~_ base: master~ # head fork OpenTOSCA/winery ~ compare: constraintchecking ~

v Able to merge. These branches can be atically merged.

i1 [WIP] Lokalitaetsabhaengigkeiten von Softwarekomponenten

6 tasks (0 completed, 6 remaining)

Y FCTEEE E M Create another pull request to discuss and review the changes again.

© Unwatch +

2

*unstar 28 YFork 30

1 View pull request

change this to OpenTOSCA/winery

_images/9-AddNewArtifactTemplate.png
Add a new Atrtifact Template

Name

Python_3_lInstall_IA

Versioning:

Type
ScriptArtifact

Namespace

http://opentosca.org/artifacttemplates

Template:

Add

_images/AdminIdHierarchy.png
©f Adminld
@, Namespacesid
4 O Typesd
@, ConstaintTypesid
@, Plananguagesid
@, PlanTypesld

_images/ComplianceRuleDetection.png
(Web-application) |- (MySQLDBS.0) Detect | (Database) (Database)
[_remereom]o—l Datatve Personaioats Daatvoe Personaionts
v Check v
(Tomcat8.5.23) (MySQLDBMSS5.0) [P, - S—— (DBMS)
v v T]
(Ubuntu16.04VM) (Ubuntu16.04VM) —hetk (VirtualMachine)
(AmazonEC2) (Openstack) — Check (Openstack)
® 15216843 ® 15216843

Required Structure 7

_images/ComponentIdHierarchy.png
3} TOSCAComponentld
4 ©F EnttyTemplateld
©, AnifsctTemplateld
® PolicyTemplsteld
© SeniceTemplateld
4 ©F EntiyTypeld
©, ArfacTyped
® CopsbiltyTypeld
® PolicyTypeld
- RequirementTypeld
4 ©F TopologyGrsphElemententity Typeld
® NodeTypeld
©f RelstionshipTypeld
4 ©F EntityTypelmplementationld
® NodeTypemplementationld
®f RelstionshipTypelmplementstionld
4 ©, Genericimportd
®, XSDimportid

_images/CompletionDialog.png
Topology Completion

Select Save Option:

Ovenwrite Topology
© Create new Topology

Name:
Namespace:

‘Open Topology in new Window
[£] complete Topology Step-by-Step

(UM Compiete Topology

_images/ComplianceRule.png
(Database) (Database)

DataType: _PersonaiData Dataype: _ PersonalData

P —

(DBMS)

VAR ZORan

(VirtualMachine)

. TR

(Openstack)
e 19216843

Identifier

Required Structure

_images/CopyrightFormat.png
B settings
o
Editor
> General
Font
> Color Scheme
> CodeStyie
Inspections
File snd Code Templates
File Encodings
Live Templates
File Types
Android Layout Editor

~ Copyright
Copyright Profiles

HTML

e
Styus
TypeScrpt
TypeScrpt IS
XML

Android Data Binding
> Emmet

Ul Designer

Images

Editor) Copyright » Formatting = For curent project

Comment Type Borders

® Use block comment Separatorbefore Length | €0

Prefix each line

Separatorafter Length:

O Use line comment
Separator:

Relative Location

o

Box
@ Before other comments.

‘Add blankline after

O After other comments.

Copyright (c) 2012. Lorem ipsun dolor =it amet, consectetur sdipiseing elit.

Morbi non loren porttitor neque feugiat blandit. Ut vitae ipsun eget quam lacinia accumsan.
Etian sed turpis ac ipsun condimentun fringilla. Maecenas magna.

Proin dapibus sapien vel ante. Aliquam erat volutpat. Pellentesque sagittis ligula eget metus.

Vestibulun commodo. Ut rhoncus gravids arcu.
SUPPIIP ST T————

Cancel

Reset

Apply

_images/CopyrightProfiles.png
CY Editor » Copyright > Copyright Profiles = Reset
Editor + - &

Name: | SPDX-License-Identifier: EPL-2.0 OR Apache-2.0
SPDX-License-Identifier: EP

Inspections

Copyright text (may contain Velocity templates):
File and Code Templates pyright text (may iy templates)

Copyright (c) ${today.year} Contributors to the Eclipse Foundation
File Encodings

Live Templates See the NOTICE file(s) distributed with this work for additional
— information regarding copyright ownership.
Android Layout Editor This program and the accompanying materials are made available under the
o @ terms of the Eclipse Public License 2.0 which is available at
http://www.eclipse.org/legal/epl-2.0, or the Apache Software License 2.0
 CopyrightProfles m] which s available athttpsi/wwwi apache.org/lcenses/LICENSE-2.0.
» Formatting

Android Data Binding SPDX-License-Identifier: EPL-2.0 OR Apache-2.0

» Emmet

Validate
GUI Designer

Images Regexp to detect copyright in comments: L e e e e G e Y]
Intentions Allow replacing copyright if old copyright matches: | Copyright

» Language Injections
Spelling
ToDo

Plugins

? oK Cancel Apply

_images/Copyright.png
QCopyright Editor » Copyright ®
Keymap Default project copyright: | No copyright v

Edto; Scope Copyright +

Copyright Profiles
v Formatting
ECMA Script Level 4
Aspect)
css
ECMAScript 6
Groovy

GSP
HTML Select Scopes to add new scopes or modfy existing ones

8 oK Cancel

_images/CreatePolicyTemplateModal.png
Add new Policy Template

Name

DemoPolicy Template|

Namespace

hitp://www.example. org/toscalpolicytemplates

Template: Start of namespace URI - used for automatic namespace URI generation

hitp://www.example org/tosca Apply

pe

DemoPolicy

Cancel m

_images/CustomKeyValueProperty.png
Wi

ery

Service Templates Node Types Refationship Types | Otner Elements: Policy Types | _ Administration

DemoPolicy @
http:/www.example orgftosca/policytypes (2

README LICENSE Language Applies To Properties Definon_| _ Inneritance Templates I
Documentation XML

© (none)

© XML element

© XML type

® Custom keylvalue pairs

Properties | Wrapper

Search:

Filter all columns. |

Name Type

_images/CreateComplianceRule.png
Add a new Compliance Rule

Name

Versioning:

Namespace

hitp:/www.example.org/tosca/compliancerules

Template:

(L m

_images/CreatePolicyModal.png
Add new Policy Type

Name

DemoPolicy|

Namespace

htp://www example.org/tosca/policytypes

Template: Start of namespace URI - used for automatic namespace URI generation

hitp://www.example org/tosca Apply

Cancel m

_images/CustomKeyValuePropertyTemplate.png
Wi

ery

Service Templates Node Types Refationship Types | Other Elements: Policy Templates

http://www.example org/toscalpolicytemplates Type: DemoPolicy

Administration

README LICENSE Properties | Documentation

prop1

_images/CustomKeyValuePropertyCreated.png
© (none)

© XML element

© XML type

® Custom keylvalue pairs

Properties | Wrapper

Search:

Fiter all columns

prop1

Type

xsdstring

Remove

_images/CustomKeyValuePropertyModal.png
Add Property

Name

‘ prop1|

Type

xsdstring

_images/DownloadGeneratedStub.jpg
Administration

Senvice Templates Node Types Relationship Types | Other Elements: Arifact Templates

Ubuntu-14.04-w1-wip1-OperatingSysteminterface-|AartifactTemplate(
http://opentosca.org/nodetypeimplementations(@

README LICENSE Files | Source | Properties Property Constraints Documentation XML

Durchsuchen... | Keine Dateien ausgewahit

You may drop the files here

The fles are immediately uploaded vithout ny confirmation

Already included Files:

AddNew Reload from Server Rename Copy allto Files -

> srcimain/iebapp/WES-INF org_opentosca_nodetypes_Ubuntu_14_04-w-wip1_OperatingSysteminterace java
\stc/main/javalorg/opentosca = = -
ey i package rg.cpentosa. edetpeinplanenttions;
= bstractiASenice java 265KB 5 Hsportgavs, erTopesins
A
5 import javax. jus.Oneway;
& import javax.jus.MebMethod;
7 import javax.jws.uebParam;
5 README.md 361KB B [import: jovex Justhenseriices
B 9 import javax.jus. soap. SOAPBinding;
& o H74KE 10 inport javax.xnl.bind.annotation. XalElenent;
1

12 @HebService
13 public class org_opentosca_nodetypes_Ubuntu_14_64-wl-wipl_OperatingSystemInterf

Pt
15 uebtiethod

1 gsoapsinding

17 gonewsy

15 public void installpackage(

19 GiebParan(nane="VMIP", targetlianespace-"http: //nodztypeinplenntations.o
20 GiebParan(nane"VMUseriiane” , targetianespace="http://nodetypeinplenentat
P giebParan(nane-"iprivateKey”, tangetlianespace="http: //nodztypeinplenent
2 GiebParan(nane-"packagelianes", targetlianespace="http: //nodetypeinplenent
2)<

2 /7 This Hashiap holds the return parameters of this operation.

2 Final Hashiiap<String, String> returnParaneters - new HashiapeString, Stri
2

// T0D0: Implement your operation here.

_images/ExcursusGit.png
Upstream (eclipse/winery)

PULL REQUEST

Ecplise/winery repository
- Only Commiter can work directly on this
repository and don‘t need pull request

Origin (opentosca/winery)

To reduce the confusing with the naming:
- Do not work on the master branch — add
a new branch with a good name for each
change which is independent of the other
changes

PULL REQUEST: Request to the other
fork to pull the content from the
requestors repository

MERGE: Merge content from another
branch/repository INTO my CURRENT
branch

_images/CustomKeyValuePropertyTemplateValue.png
DemoPolicyTemplate @
hitp://www example.org/toscalpolicytemplates (2

Type: DemoPolicy

| README | LICENSE | Propetties | Documentation XML

propt vl

_images/DeferredExample.png
WAR
(WAR)

Requirements

WebserverContainerRequirement

Capabilities

.

(defelrred)

Amazon_EC_2_lInsta...

(Amazon_EC_2_lInsta...

_images/GenericIdHierarchy.png
4 9] Genericld
» @F Adminid
@, DummyParentorGeneratedXSDRet
» @f TOSCAComponentid
» @4 TOSCABementid

_images/IncompleteTopologyExample.png
WAR
(WAR)

Requirements

‘WebserverContainerRequirement

Capabilties

(SQLConnection)

SQL_Database
(SQL_Database)

Requirements

SQLDBMSRequirement

Capabilties

_images/FilesystemDirectoryLayout.png
Ul htpS3AS2F2Fesmple.com®i2FNodeTypes
0N
b policytemplates
b policytypes
b reltionshiptypes
Ui requirementiypes
B servicetemplates

Name

gt

b admin

b artifacttypes

(b capabilitytypes.
b imports

(! nodetypes

(! policytemplates
(b policytypes

i reationshiptypes
Ul requirementtypes
i senicetemplates
[giatiibutes

Anderungsdatum

11062014 1522
261120131355
11062014 1518
11.06.2014 1424
11062014 1518
110620141515
11.06.2014 1424
11.06.2014 1424
11.06.2014 1424
11.06.2014 1424
110620141515
261120131355

Ty GroBe

Dateiordner
Dateiordner
Dateiordner
Dateiordner
Dateiordner
Dateiordner
Dateiordner
Dateiordner
Dateiordner
Dateiordner
Dateiordner
Textdokument %8

_images/GenerateImplArtifact.jpg
Winery zhout
Service Templates Node Types | Relationship Types Other Elements Administration
Ubuntu® Version: 14.04-w1-wip1
hitp:/fopentosca.org/nodetypes
README LICENSE Visual Appearance Instance States Interfaces | Implementations Tags
Requirement Definitions Capability Definitions Properties Definition Inheritance Documentation XML

Operations

ratingSystemint ~ | installPackage ~
http:/fopentosca org/interfaceshtests transferFile
runScript

Generate Implementation Artfact | | Generate Lifecycle Interface

Input Parameters

Name Type Required
MIP xsd:String YES
VMUserName xsd:String YES
VMPrivateKey xsd:String YES

Output Parameters

Name. Type Required

WaitResult xsd:String YES

_images/InheritanceAbstractComponentInstanceResource.png
Y9 AbstractComponentinstanceResource
4’ ©F AbstrsctComponentinstanceResourceMWithNameDerivedFromAbstrsctFinsl

4 ©% Entt TypelmplementationResource
®, NodeTypemplementationResource
®, RelstionshipTypelmplementationResource
4 ©F EntitTypeResource
®, ArifactTypeResource
D) CapabiityTypeResource
B} PoliyTypeResource
©, RequirementTypeResource
4 ©F TopologyGrsphElementEntity TypeResource
9, NodeTypeResource
9, RelationshipTypeResource
4 ©F AbstrsctComponentinstancelWithReferencesResource
®, ArifsctTemplateResource
D, SeniceTemplsteResource
4 ©, GenericimportResource
®, XSDimporResource
B§ PolicyTemploteResource

_images/InheritanceAbstractComponentResource.png
¥} AbstractComponentsResource
4 ©F AbstrsctComponentsWithTypeReferenceResource

©, AifactTemplatesResource
®, NodeTypelmplementationsResource
®, PolicyTemplstesResource
®, RelstionshipTypelmplementstionsResource

®, AifsctTypesResource

®, CapsbilityTypesResource

®, GenericimportsResource

©, NodeTypesResource

®, PolicyTypesResource

®, RelstionshipTypesResource

®, RequirementTypesResource

©, SeniceTemplstesResource

@, XSDimportsResource

_images/run-workflowmodeler-step2.png
-
> 0 Junie
v [opm
[IIT0SCA Mangement U
[iTopologymodeler
[Workfiowmodeler
lint-workfowmodeler

lint-topologymodeler
lint-tosca-management
> 7 Tomeat Server

> Templates

Nome: | Worklowmodeler Clshere 0] Alow garliel run
packageion: | Cgit-reposkecipselwinenyorg.cclpsemineryfontendsipackagejson -
o <
et [sortworkfiowmodelel

frs

Node interpeter | Prgect mose (C\Program FieA\modeinodeese) o150~
Node optons:

Package manager, | Project CAProgrem Flesinodeisnode modulesinpm 641~
s

~ Before launch: Adtivate tool window

+

There are no tasks to run before launch

(0] Show this page [Actvate tool window

ol (e

_static/file.png

_static/plus.png

_static/minus.png

_images/12-AddNewNodeTypeImplementation.png
Add a new Node Type Implementation

Python_3_Impl|
Versioning:

Type

Python_3-w1-wip1

Namespace

http://opentosca.org/nodetypeimplementations

Template:

_images/13-AddNewNodeTypeImplementation.png
Winery

Senvice Templates Node Types Relationship Types. Other Elements: Node Type Implementations | Adminisiration

Python_3_Impi Version: wi-wip1 Delet
http://opentosca.org/nodetypeimplementations(

Export ~ ions +

Implementation for Python_3-wi-wip1

README LICENSE Implementation Artifacts Deployment Artifacts Inheritance Documentation XML

Python_3_Impl_-w1-wip1 ’

Haftungsausschluss

Dies ist ein Forschungsprototyp und enthalt insbesondere Beitrage von Studenten. Diese Software enthat maglicherweise Fehler und funktioniert maglichenweise.
insbesondere bei variierten oder neuen Anwendungsfallen, nicht ichtig. Insbesondere beim Produktiveinsatz muss 1. die Funktionsfahigkeit geprift und 2. die Einhaltung
‘samticher Lizenzen geprift werden. Die Haftung fur entgangenen Gewinn, Produktionsausfall, Betriebsunterbrechung, entgangene Nutzungen, Verlust von Daten und
Informationen, Finanzierungsaufwendungen sowie sonstige Vermogens- und Folgeschaden ist, aufer in Fallen von grober Fahriassigkeit, Vorsatz und Personenschaden
ausgeschiossen

Disclaimer of Warranty

Unless required by applicable law or agreed to in witing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without imitation, any warranties or conditions of TITLE, NON-NFRINGEMENT,
MERCHANTABILITY. or FITNESS FOR A PARTICULAR PURPOSE.

—

_images/10-AddNewArtifactTemplate.png
Other Elements: Artifact Templates Administration

Service Templates Node Types Relationship Types |

Python_3_Install_IA# Version: w1-wip1 Delete | Export~ | Vel

http://opentosca.org/artifacttemplates(# e ST

XML

Properties Property Constraints Documentation

README LICENSE Files Source

A
Python_3 Install_IA

Haftungsausschluss

Dies ist ein Forschungsprototyp und enthalt insbesondere Beitrage von Studenten. Diese Software enthalt moglicherweise Fehler und funktioniert moglicherweise,
insbesondere bei variierten oder neuen Anwendungsféllen, nicht richtig. Insbesondere beim Produktiveinsatz muss 1. die Funktionsfahigkeit gepruft und 2. die Einhaltung
samtlicher Lizenzen gepriift werden. Die Haftung fiir entgangenen Gewinn, Produktionsausfall, Betriebsunterbrechung, entgangene Nutzungen, Verlust von Daten und
Informationen, Finanzierungsaufwendungen sowie sonstige Vermogens- und Folgeschaden ist, auRer in Fallen von grober Fahrlassigkeit, Vorsatz und Personenschaden

ausgeschlossen.

Disclaimer of Warranty

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS I1S" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT,

MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE.

_images/11-AddNewArtifactTemplate.png
Winery

Service Templates Node Types Relationship Types ‘ Other Elements: Artifact Templates | Administration

Python_3_Install_IA# Version: w1-wip1 Delete | Export~ | Vers
http://opentosca.org/artifacttemplates(#’

Type: ScriptArtifact

README LICENSE ‘ Files ‘ Source Properties Property Constraints Documentation XML
A N
Durchsuchen... = Keine Dateien ausgewahlt. ZIP

‘You may drop the files here.

The files are immediately uploaded without any confirmation.

Contained Files

T installsh 0.07KB

_images/14-AddNewNodeTypeImplementation-LinkArtifactTemplate.png
Add Implementation Artifact

Name

Python_3_Impl_IA|

Interface Name

http://opentosca.org/interfaces/lifecycle
Operations

install

Artifact Template Creation

O Create Atifact Template

Check if you want to upload new files, you do not want to reuse existing fles and you do not point to an
image library.

@ Link Artifact Template
Check if you want to reuse existing fles
O Do not create an artifact template

Check if you want to point to an image library.

Artifact Template

Python_3_lnstall_IA_w1-wip1

_images/PropertiesToMap.png
*Map Properties

Click continue when you finished mapping. Click save to finish
updating the Node Template.

NEW REMOVED RESOLVED
BanksID () BankiD
Login CardiD
CardsID

_images/SetScopes.png
QsScopes Appearance & Behavior > Scopes ®

v Appearance & Behavior t-0m Name: | TOSCA_YAML
; €8 TOSCA_YAML -
File Colors

s a) Pattern: | .winery.model.tosca.yaml]:*..# | [src[org.eclipse.winery.yamL.converter]:*..* | testforg.eclipse.winery.yamLcommon]:*..# [test[org.eclipse.winery.yaml.converter]:*..* | @

Keymap H (]] Y B0 Packages v Scope contains 157 of total 85.309 files
v Editor » Iy Library Classes
o Gl v B Production Classes
el > Iz org.eclipse.winery.bpmndtosca.converter.tobpel Include Recursively
> Iz org.eclipse.winery.cli
v Color Scheme N
> Iz org.eclipse.winery.common
By S . .
V Seope > Iz org.eclipse.winery.generators.ia Exclude Recursively
Inspections » Wz org.eclipse.winery.highlevelrestapi
Live Templates » I org.eclipse.winery.model bpmndtosca
(s » Iz org.eclipse.winery.model.csar.toscametafile
- > Iz org.eclipse.winery.model.selfservice
> Iz org.eclipse.winery.model tosca

v Languages & Frameworis > momgedpsewnerymodeltoscayaml

SQL Resolution Scopes org.eclipse.winery.repository
org.eclipse.winery.repository.client
org.eclipse.winery.repository.configuration
; org.eclipse. winery.repository.rest
org.eclipse. winery.repository.
org.eclipse. winery.topologymodeler
org.eclipse.winery.workflowmodeler
% orgeclipse winery.yaml.common
org.eclipse.winery.yaml.converter
winery

>

v Tools >
>
>
>
>
>
>
>
>

v BaTestClasses
>
>
>
>
>
>
>
>
>
>

Diagrams

org.eclipse.winery.bpmndtosca.converter.tobpel
org.eclipse.winery.cli
org.eclipse.winery.common

; org.eclipse. winery.generators.ia

org.eclipse winery.repository
org.eclipse.winery.repository.client

; org.eclipse. winery.repository.rest

org.eclipse. winery.topologymodeler
org.eclipse.winery.yaml.common

% orgeclipse winery.yaml.converter

m Recursively included

 Partially included
¥ Share scope

oK Cancel

_images/Pbdcm.jpg
-

Usva_5-Applcs

hostedon

hosiedon

hostedon

Open Palette

hostedon

hostdon

hostedon

hostzdon
hostaon

_images/PbdcmRefinement.jpg
S re——T e G

=

Usva_5-Appicat

2

SaL-Connection

hostedon

hostedon

2

Start Refinement

SQL-Connection

Java

ava_ 8- Ao

hostedon

hostedon

Ny

_images/1-AddUbuntuNodeType.jpg
Winery Zbout

Service Templates | NodeTypes | Relationship Types Other Elements Administration

‘ Q Ubuntu® Version: 14.04-w-wip1

http://opentosca.org/nodetypes(®

README LICENSE Visual Appearance Instance States Interfaces Implementations Tags |

[
| Reguirement Definitions Capability Definitions Properties Definition Inheritance Documentation XML
|

Ubuntu-14.04 ez z

I €€ This node type corresponds to an Ubuntu-14.04 virtual machine.

Properties

« vuP (optional)
« VMInstanceId (optional)
- Vype

« VMUsertane

« VMUserPassword

o VHPrivateKey

* VMPublickey

« VKeyPairtiane

Haftungsausschluss

Dies ist ein Forschungsprototyp und enthatt insbesondere Beitrage von Studenten. Diese Software enthalt moglicherweise Fehler und funktioniert moglicherweise.,
insbesondere bei variierten oder neuen Anwendungsfallen, nicht richtig. Insbesondere beim Produktiveinsatz muss 1. die Funktionsfahigkeit geprift und 2. die Einhaltung
samtlicher Lizenzen geprift werden. Die Haftung fur entgangenen Gewinn, Produktionsausfall, Betriebsunterbrechung, entgangene Nutzungen, Verlust von Daten und
Informationen, Finanzierungsaufiwendungen sowie sonstige Vermagens- und Folgeschaden ist. aufser in Fallen von grober Fahrlassigkeit, Vorsatz und Personenschaden
ausgeschlossen

Disclaimer of Warranty

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without fimitation, any warranties or conditions of TITLE, NON-NFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and
assume any risks associated with Your exercise of permissions under this License

_images/ThreatCatalog.png
Threat Modeling *

Create New Threat
Available Mitigations

Threat Catalog

No_Traffic_Encryption_w1-wip1
The connection between users or services and the
corresponding component is not encrypted. This

embodies the risk of potential attacks e.g. Man-In-
The-Middle attacks

(Spocfing) CITD

MySQL_ports_exposed_w1-wip1

The ports of this component are publicly exposed
and increase the attack surface of the application.

(Information Disclosure) LD

Close

_images/1-CreateServiceTemplate.gif
Node Types

Relationship Types

Other Elements

Administration

Add new

ABMasteronly
radon.blueprints festing

- WX

DeploymentTestAgent
radon.blueprints testing

- WX

ImageResize
radon legacy blueprints

- WX

JMeterMasterOnly
radon.blueprints testing

- WX

LocustMasteronly
radon.blueprints testing

- WX

QTMasteronly
radon blueprints testing

w i X

Import CSAR

Group by Namespace

1

LFS:
available

_images/ThreatCreation.png
Threat Model

Create New Threat

Threat name | MyThreat

Description My Description

STRIDE Spoofing

Severity Low

Available Mitigations

Threat Catalog

Cancel

_images/Splitting.png
ign-h () = Align-v() | Ids Types Properties Deployment Artifacts = Requirements & Capabilties = Policies ~ TargetLocations = PrintView Spit | Import

PHP-5 WebApplication
Lk RESTAPI wsaLoe
(ConnbasTo) avan) (1ysaL-o8)
Target Location
s ——E
Target Location Target Location
AmazonPazs AmazonPass
(Hostedon)

PHP-5-lodule

(PHP-5-Hodule) Tomeat 7 Enter the target location 55

-

Target Location [apeT—
Empty Empty.

Target Location
Empty.

_images/1-AddNewNodeType.jpg
Winery

Service Templates 1 Node Types | Relationship Types Other Elements. Administration

(Ll) r—

Import CSAR

http:/jopentosca.orginodetypes

Import YAML

Show all ltems.

1

http:/jopentosca.org/nodetypes/versioned

« Previous [Next »

_images/ThreatAssessment.png
Winery about

Service Templates Node Types Relationship Types Other Elements Administration

N ——— ca

http://opentosca.org/servicetemplates#

README LICENSE Topology Template Plans Selfservice Portal Boundary Definitions Tags

Constraint Checking Documentation XML Threat Assessment

“This panel shows all current threats that impose potential risks to the system. Additionally employed mitigation strategies are displayed.

No_Traffic_Encryption_w1-wip1 STRIDE: severty: ([P
Description

The connection between users or services and the corresponding component is not encrypted. This embodies the risk of potential attacks e.g. Man-In-The-Middle
attacks

Targeted Node Template(s):

“wordpress-web-app" of type WordpressWebApp-VM
Can be mitigated by: ~ S-NS_w1-wip1

Can be mitigated by: ~ S-VNF.SSLProxy_w1-wip1

MySQL_ports_exposed_w1-wip1 BT Information Disclosure JIESWY Middle |

Description
The ports of this component are publicly exposed and increase the attack surface of the application.

Targeted Node Template(s):
“"database” of type MySQL-DB-VM

Mitigated by: S-VNF.Firewall_w1-wip1

Can be mitigated by: S-NS_w1-wip1

_images/TopologyComplete.png
Apache_Tomcat_7
(Apache_Tomcat_7)

(depidy_on)

JENN. A

Windows_7
(Windows_7)

(depidy_on)

v

Virtual_Machine
(Virtual_Machine)

S
(depidy_on)

v

Amazon_EC_2_Instance
(Amazon_EC_2 Insta.

Y 4

(SQLConnection)

(deploy_on)

SQL_Database
(SQL_Database)

(SQLCoRnection)

salL_peMs
(SQL_DBMS)

_images/run-step9-button-add-deployment-artifacts.png
Run/Debug Configurations x

¥ L Mme: | Tomeat - REST D

e S o SRR o5 | Cose v sprConnecion

> % Defautts Deploy atthe server startu

_images/run-step8-name-and-no-browser.png
Run/Debug Configurations

X
+ - B Name: | Tomeat - REST Olshare
e S Serer| Deployment | Logs | Code Coverage | Starup/Comnction
> % Defaults Application server: | Tomcat 9.0.7

v| | Configure..

Open browser

Attertaunch | @ Defaut][] O vith avascrpt debugger
g ocalhosse060/

VM options:

_images/run-topologymodeler-step2-configure.png
+-B A
> 0 Junie
~ [lopm
[IIT0SCA Mangement U
Difopologymodeler
[iWorkflowmodeler
lint-workfowmodeler

lint-topologymodeler
lint-tosca-management
> 7 Tomeat Server

> Templates

Name: | Topologymodeler Dlshare [Allow paralel run
packagejson: | Ci\git-repos\eclipse\winery\org.eclipsewinery frontends\package json -
Command: wn -
Sapts: [sortopologymodele

Arguments:

Node interpreter: | Project node (C:\Program Fils\nodejs\node.exe) 10150 ~
Node options:

Package manager: | Project C\Program Fles\nodej\node_modules\npm 641+
Environment:

~ Before launch: Adtivate tool window

+

There are no tasks to run before launch

(0] Show this page [Actvate tool window

DY

ol (e

_images/run-topologymodeler-step1-add-npm-config.png
Run/Debug Configurations

+ - Ry
‘Add New Configuration
P Gauge Execution
 Gradle
) Grffon
@ Groowy
Guntjs
¥ Gulpjs
{1 AR Application
5 JavaScript Debug
5 Jest
@] JUnit
K Kotlin.
K Kotlin script.
I LaTex
O Lettuce
£ Maven

L o A——

_images/NewVersionAvailable.jpeg
1

Apache-Spark_2.0

Spariz (Apache-Spark_2.0)

TestNode_w1-wip1
(TestNode_w1-wip1)

ConnectsTo

1

HostedOn

Ubuntu-14.04-VM
(Ubuntu-14.04-VM)

VSphere_5.5
(VSphere_5.5)

HostedOn

_images/components.png
TOSCA

Topology Model Editor

TOSCA XML Model
Importer &
Exporter

CSAR Packager

Consistency Check

Winery Ul Components

BPMN4TOSCA Templates, Types, Plans &

C li Rule Edit
IITATEIES LS e ey Management Plan Editor CSARs Management Ul

HTTP REST API

Versioning & TOSCA YAML BPMN4TOSCA
Xaa$ Packager Difference Model Importer & Management Plan
Calculation Exporter Importer

TOSCA YAML Model BPMN4TOSCA
Accountability to TOSCA XML to BPEL
Model Transformer Transformer

Topology
Completion

Templates, Types, Plans & CSARs Management

Key & Access Control
List (ACL)
Management

Compliance Key-based Policy
Checker Template Generator

Implementation

Splitting & Matching Artifact Generator

Templates, Types,
Plans & CSARs
Repository

Functionality provided by the
(SWTIIELIENIEEIN : OpenTOSCA Container and usable in the
Repository i Winery if a Container instance is running

Matching
Templates
Repository

BPEL Provisioning
Plan Generator

Winery Backend System Compol

_images/eclipse_save_actions.png
type filter text

CopyrightTool
Data Management

Help

e Update Format source code
hy O Formatalnes
Java (® Format edited lines

» Appearance Configure the formatter settings on the Formatter page.
» Build Path

» Code Style
» Compiler
» Debug
4 Editor
» Content Assist

erform the selected actions on save

Organize imports
‘Configure the organize imports settings on the Organize Imports page.
Additional sctions

A s o e e s
e S o e e e
vttt s
e e
e e
O B i
Ak e B i L
s Colonng Mg QO aaters
Siaxco g v maton o mplamentons et s

mpl - Add missing ‘@Deprecated’ annotations

Typing + Remove unnecessary casts

et -

e

o

_images/activate-checkstyle.gif
winery\winer

Navigate Code Analyze Refactor Build Run Tools VCS Window Help

eclipse.winery.common main) ' java) P EBLEGS

<1 7: Structure
aseqeieq

3
E
2

éa

- 2: Favorites.

£\ Rebel

Q

_images/behavior-pattern-mappings.png
P2P-Channel_Exacty-Once-Delivery_Information-Obscurity @ Version: wl-wipl

hitp:fiopentosca.orgipattemrefinementmodels &

README LICENSE Detector Refinement Structure Grafic Modeling Relation Mappings
{uribute Mapp 2y Mappings Deployment Artifact Mappings Permutation Mappings Permutations

| Behavior Pattern Mappings XML

Search:
Filter all columns
Detector Element Behavior Pattem Refinement Element Refinement Element Property
d_Pointto-Point-Channel_wl-wipl 0 exactyOnceDelivery rs_SQS-Queue_wl-wip1_ 0 type: FIFO
d_Pointto-Point-Channel_wl-wipl 0 informationObscurity rs_SQS-Queue_wl-wip1_ 0 ssettrue

_Point-to-Point-Channel_wi-wipl 0 informationObscurity 1s_SQS-Queue_wlwip1_0 masterKey: defaut

_images/eclipse_save_actions_3_member_accesses.png
8} Additonl Save Actions

Code Organizing| Code Style| Member Accesses| Missing Code| Unnecessary Code|

Non static accesses

Use ‘this' qualifierfor field accesses

Use declaring class a2 qualfier
Qualfy feld accesses
Qualiy method sccesses

Change sl accesses through subtypes

Change all accesses through instances

Preview:

private int value;
public int get() {

return this.value + this.value;
¥

public int getZero() {
return this.get() - this.get();

¥
class E {
public static int NUMBER;
public static void set(int i) {
E.NUMBER= i;
¥
public void reset() {
E.set(e);
¥
¥

14 of 26 save actions activated

_images/eclipse_save_actions_4_missing_code.png
8] Aditional Save Actions

& % |

e — - N
‘Code Organizing | Code Style | Member Accesses| Missing Code | Unnecessary Code
Annotations Preview:
Add missing Annotations class E { =
e
Implementations of interface methods (L6 or highe) :/@“P”“““
@Deprecated’ @eprecated

public void foo() {}

¥

class ESub extends E implements Runnable {
@verride
public void foo() {}
@verride
public void run() {}

¥

class E implements java.io.Serializable {

¥

public class Face implements IFace {

¥ -

‘ ’

14 of 26 save actions activated

_images/eclipse_save_actions_1_code_organizing.png
8} Additonl Save Actions

& % |

‘Code Organizing | Code Style | Member Accesses | Missing Code | Unnecessary Code|

Ignore empty lines

Sort all members

Ignore fields and enum constants.

Reordating ffedsand nfilzers ca resulin semantc and
B (e changes

‘The settings for sorting members can be changed on the Members Sort

Preview:

import org.model. Engine;

o
*.A-Javadoc - comment'

*@since 2007
*/
public class Engine {

public void start() {
¥

public void- stop() {

Order preference page. }
¥
class SortExample {
private String foo; 1
< »
14 of 26 save actions activated

_images/eclipse_save_actions_2_code_style.png
8} Additonl Save Actions

Code Organing]Code Sy Member Acceses| Missing Code Unnecsssory Code]

Control statements
Use blocks in fwhilefor/do statements

Always

Aways except for single eturn’or throw statements

Only i necessary
Convert for loops to enhanced

Expressions

Use parentheses in expressions
Always

Only i necessary

Preview:

if (obj == null) { -
throw new TllegalArgumentException();

}
if (ids.length >) {
System.out.printIn(ids[0]);
} else {
return;
¥

for (int i - @; i < ids.length; i++) {
double value= ids[i] / 2;
System.out.println(value);

Variable declarations ¥
Use moifier final where possible

boolean b= (((i > 0) & (i < 10)) || (i == 50))
I Private fields Parameter Local varicbles

private int i- 0;

public void foo(int) {

int k, h; 1
I Rl P— i v
14 of 26 save actions activated

_images/UpdatedNodeTemplate.jpeg
TestNode_w1-wip1
(TestNode_w1-wip2)

VSphere_5.5
(VSphere_5.5)

AdapterFor

HostedOn

Apache-Spark_2.0
(Apache-Spark_2.0)

HostedOn

Ubuntu-14.04-VM
(Ubuntu-14.04-VM)

_images/VersionSelection.jpeg
*Select new version

S w1-wip3
O wl-wip2

Cancel Continue

_images/group_view.gif
Open Palette

winery Layout & | Algn = | Algn i | Import Topology || Ids

Properties | Deployment Artifacts | Requirements & Capabiliies | Policies || Target Locations | Spit || Match || Place Components || Detect Problems || Management Feature Enrichment

Determine Stateful Components | Determine Freezable Components | Clean Freezable Components || Refine Pattems || Refine Topology with Tests || Generate GDM || Extract Partner LDM || Group View | | Substitute Placeholder | Other ~

T
* bockercontainer

(Dockercontainer)
1 docker

Hostedon

\

(Dockerngine)
1 docker 2

Hostedon

Y

1
Ubuntu-vie
(Ubuntu- VM 18.04-w1)

Hostedon

Y

openstack
(Openstac Train-w1)

_images/oauth-flow.png
Client

@ —authorize?clientid="id"&state="myState”——P»

< returnaddress?client/d="id"&
state="myState”&code="code” ﬁ

GitHub Server

Iogin/

e

grant access

W

-getGitHubAccessToken?state ="myState"&code="code"—>

accesstoken?client|d="id"&clientsecret="sec” ®
&state="myState”&code="code”

return access token4>

return access token o

_images/group_selection.png
Management Feature Enrichment

"| Create new participant with %

Selection

O Create new Participant
© Select existing Participant

Select Participant ~ Clear

Selected: partnerA

_images/group_type.png
Management Feature Enrichment

“*’| Current Selection:

Id
Java8 0

DockerContainer_0

O Create Group Type
© Select existing Group Type

Group Type

participant

Add to pa

_images/run-repositoryui-step1-add-npm-config.png
Run/Debug Configurations

+ - Ry
‘Add New Configuration
P Gauge Execution
 Gradle
) Grffon
@ Groowy
Guntjs
¥ Gulpjs
{1 AR Application
5 JavaScript Debug
5 Jest
@] JUnit
K Kotlin.
K Kotlin script.
I LaTex
O Lettuce
£ Maven

L o A——

_images/pattern-detection-model.png
winery Layout 88 | Align = | Align i | Ids Types Properties Deployment Artifacts | Requirements & Capabilities | Policies = Refine Patterns | | Refine Topology with Tests || Refine Pattems | Refine Topology with Tests Version Slider

* Angular_Private-Cloud_Static-Workload_Ul-Component_w1-wip1

g \ g \ (¢ oo) [(A
ocmetFonrs o coenctinstoigt [OSSR Gl £ TS sevrocumecomectonwton [0 RN SseGimmComsonniaiel 22 (T) Seore S0k Cometn
:) u | 0 Java] L

Database
MySGL: (MySOLDatabase BT
1

] 1 Java

Open Palette

hostedOn_wi-vip1 hostedOn_wi-vip1
hostedOn_wi-vip1

hostedOn_wi-vip1

Paas Envionment
Wiebserer

hostedOn_wi-vip1

(Bstic Beanstalk Worker-
(Tomeat_10w1-wip1)

DBV
hostedOn_wi-vip1 (MySQLDEMS B i-wipl)

10w1-wipT)

hostedon_ w1 NostedOn wi-w1

hostedOn_wi-vip1
hostedOn_wi-vip1

! ! ! frtual Machine
- oo pass v ouroos [
(U 2008 w151 {AWS e s . fhrt— {AWS e s
' '

(Uourt 200441

hostedOn_wi-vip1 hostedOn_wi-vip1 hostedOn_wi-wip1 hostedOn_wi-vip1
hostedOn_wi-vip1

1

aWS Awsviel

> (wswiwen)

1
n Pt Cloud
(OpenStack Vitri -

1
n Pt Cloud
(OpenStack Vitri -

1 openstack

1 openstack

_im